タグ「回転体の体積」の検索結果

7ページ目:全273問中61問~70問を表示)
滋賀医科大学 国立 滋賀医科大学 2015年 第1問
$a$を定数とする.$x>0$における関数
\[ f(x)=\log x+ax^2-3x \]
について,曲線$y=f(x)$は$\displaystyle x=\frac{1}{\sqrt{2}}$で変曲点をもつとする.

(1)$a$を求めよ.
(2)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解の個数を求めよ.
(3)曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=2$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
茨城大学 国立 茨城大学 2015年 第1問
$f(x)=2xe^{-x}$とおく.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$0 \leqq x \leqq 3$の範囲で,関数$y=f(x)$の増減,極値,グラフの凹凸,変曲点を調べて,そのグラフの概形をかけ.
(2)正の実数$a$に対して,$\displaystyle I_a=\int_0^1 xe^{-ax} \, dx$,$\displaystyle J_a=\int_0^1 x^2e^{-ax} \, dx$とおく.$J_a$を$I_a$と$a$を用いて表せ.
(3)定積分$\displaystyle \int_0^1 f(x) \, dx$および$\displaystyle \int_0^1 \{f(x)\}^2 \, dx$を求めよ.
(4)曲線$y=f(x)$と,$3$直線$x=0$,$x=1$および$y=t$で囲まれた図形を,直線$y=t$を軸として$1$回転させてできる回転体の体積を$V(t)$とする.$t$を動かしたとき,$V(t)$の最小値とそのときの$t$の値を求めよ.
三重大学 国立 三重大学 2015年 第3問
関数$f(x)=e^{\sqrt{x}-1}-\sqrt{x} (x \geqq 0)$を考える.以下の問いに答えよ.

(1)$f(x) \geqq 0$を示せ.また等号が成立するような$x$の値を求めよ.
(2)曲線$y=f(x)$と$x$軸および$y$軸で囲まれた図形を$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
岐阜大学 国立 岐阜大学 2015年 第4問
関数$f(x)=e^{-x}$を考える.曲線$y=f(x)$を$C$とする.$t>0$として,曲線$C$上の点$(t,\ f(t))$における接線と$x$軸,$y$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.以下の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)原点を$\mathrm{O}$とするとき,$\triangle \mathrm{OPQ}$の面積を$S$とする.$t$が変化するとき,$S$の最大値を求めよ.また,そのときの$2$点$\mathrm{P}$,$\mathrm{Q}$を通る直線$\ell$の方程式を求めよ.
(3)$C$と$(2)$で求めた$\ell$および$y$軸で囲まれた図形を$y$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
茨城大学 国立 茨城大学 2015年 第4問
$xy$平面において,関数$\displaystyle y=\frac{1}{\sqrt{x}}$が表す曲線を$C$とし,$C$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{\sqrt{t}} \right)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$とする.このとき,以下の各問に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)曲線$C$,$x$軸,直線$x=t$,および点$\mathrm{Q}$を通り$x$軸に垂直な直線で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
(3)線分$\mathrm{PQ}$の長さを$L(t)$とする.点$\mathrm{P}$が$C$上を動くとき,$L(t)$の最小値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第3問
次の問いに答えよ.

(1)$0<x<2\pi$の範囲において,方程式$\sin 5x=\sin x$の解をすべて求めよ.
(2)$(1)$で求めた解のうちで最小のものを$a$とする.曲線$y=\sin 5x-\sin x (0 \leqq x \leqq a)$と$x$軸で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積を求めよ.
大阪教育大学 国立 大阪教育大学 2015年 第4問
関数$\displaystyle f(x)=\frac{\log x}{\sqrt{x}}$について,以下の問に答えよ.ただし,$\log x$は自然対数を表すものとする.

(1)$f(x)$が極値をとる$x$の値はただ$1$つであることを示し,そのときの$x$の値を求めよ.
(2)$(1)$で求めた$x$の値を$c$とするとき,$y=f(x)$のグラフと$x$軸と直線$x=c$で囲まれた部分を$D$で表す.$D$の面積を求めよ.
(3)$(2)$で定めた$D$を$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
山形大学 国立 山形大学 2015年 第2問
$\displaystyle y=\cos \frac{\pi x}{2} (0 \leqq x \leqq 1)$で与えられる曲線を$C$とする.曲線$C$と$x$軸,$y$軸で囲まれた図形$S$について,以下の問いに答えよ.

(1)図形$S$の面積を求めよ.
(2)図形$S$を$x$軸のまわりに$1$回転させて得られる立体の体積を求めよ.
(3)部分積分法を用いて次の不定積分を求めよ.
\[ \int x^2 \sin x \, dx \]
(4)図形$S$を$y$軸のまわりに$1$回転させて得られる立体の体積を求めよ.その際,曲線$C$は変数$t$を媒介変数として
\[ x=\frac{2}{\pi}t,\quad y=\cos t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表せることを利用せよ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(1,\ e)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を求めよ.
(2)図形$D$の面積$S$を求めよ.
(3)定積分$\displaystyle \int_1^e (\log y)^2 \, dy$を求めよ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(a,\ e^a)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.ただし,$a>1$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)図形$D$の面積$S$を$a$を用いて表せ.
(3)定積分$\displaystyle \int_{e^b}^{e^a} (\log y)^2 \, dy$を$a$を用いて表せ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を$a$を用いて表せ.
(5)$\displaystyle \lim_{a \to \infty} \frac{V}{ae^a}$と$\displaystyle \lim_{a \to \infty} \frac{V}{aS}$を求めよ.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。