タグ「回転体の体積」の検索結果

5ページ目:全273問中41問~50問を表示)
会津大学 公立 会津大学 2016年 第3問
関数$\displaystyle y=\frac{1-x^2}{1+x^2}$のグラフと$x$軸によって囲まれた部分を$A$とする.このとき,以下の空欄をうめよ.

(1)等式$\displaystyle \frac{1-x^2}{1+x^2}=a+\frac{b}{1+x^2}$が,$x$についての恒等式となるように定数$a,\ b$を定めると,$a=[イ]$,$b=[ロ]$である.
(2)$A$の面積は$[ハ]$である.
(3)$A$を$y$軸のまわりに$1$回転してできる立体の体積は$[ニ]$である.
名古屋市立大学 公立 名古屋市立大学 2016年 第1問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周上に,中心角$\theta$の弧$\mathrm{AB}$をとる.ただし,点$\mathrm{A}$の座標を$(1,\ 0)$,$\displaystyle 0<\theta \leqq \frac{\pi}{2}$とする.このとき,次の問いに答えよ.

(1)扇形$\mathrm{OAB}$を$x$軸の周りに$1$回転させた回転体の体積$V_1(\theta)$を求めよ.
(2)扇形$\mathrm{OAB}$を$y$軸の周りに$1$回転させた回転体の体積$V_2(\theta)$を求めよ.
(3)体積の差$V(\theta)=V_2(\theta)-V_1(\theta)$を$\theta$の関数として,そのグラフをかけ.
名古屋市立大学 公立 名古屋市立大学 2016年 第1問
座標平面上の原点$\mathrm{O}$を中心とする半径$1$の円周上に,中心角$\theta$の弧$\mathrm{AB}$をとる.ただし,点$\mathrm{A}$の座標を$(1,\ 0)$,$\displaystyle 0<\theta \leqq \frac{\pi}{2}$とする.このとき,次の問いに答えよ.

(1)扇形$\mathrm{OAB}$を$x$軸の周りに$1$回転させた回転体の体積$V_1(\theta)$を求めよ.
(2)扇形$\mathrm{OAB}$を$y$軸の周りに$1$回転させた回転体の体積$V_2(\theta)$を求めよ.
(3)体積の差$V(\theta)=V_2(\theta)-V_1(\theta)$を$\theta$の関数として,そのグラフをかけ.
兵庫県立大学 公立 兵庫県立大学 2016年 第2問
曲線$y=e^{-x^2}$と直線$\displaystyle y=\frac{1}{e}$で囲まれた図形を$y$軸のまわりに$1$回転してできる立体の体積を求めよ.
京都府立大学 公立 京都府立大学 2016年 第4問
$2$つの関数を$\displaystyle f(x)=\frac{\sqrt{2}}{2}x+\sqrt{1-x^2} (-1 \leqq x \leqq 1)$,$\displaystyle g(x)=\frac{\sqrt{2}}{2}x$とする.$xy$平面上に,曲線$C:y=f(x)$,直線$\ell:y=g(x)$がある.$C$と$\ell$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を$V$とする.以下の問いに答えよ.

(1)$f(x)$の最大値と最小値を求めよ.
(2)$-1 \leqq x \leqq 1$のとき,不等式$|f(x)|>|g(x)|$を解け.
(3)$V$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2016年 第3問
関数$\displaystyle f(x)=\frac{\log x}{\sqrt{x}} (1 \leqq x \leqq 8)$について,次の問いに答えよ.

(1)$f(x)$の最大値,最小値を求めよ.
(2)曲線$y=f(x)$,$x$軸,および直線$x=e$とで囲まれた図形を$x$軸のまわりに$1$回転してできる立体の体積$V$を求めよ.
札幌医科大学 公立 札幌医科大学 2016年 第4問
関数$f(x)=x+2 \cos x$を$0 \leqq x \leqq 2\pi$の範囲で考える.

(1)関数$y=f(x)$の極値と変曲点を求め,グラフの概形を描け.
(2)関数$y=f(x)$の二つの変曲点を通る直線を$\ell$とする.曲線$y=f(x)$と直線$\ell$とで囲まれる図形を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
東京大学 国立 東京大学 2015年 第3問
$a$を正の実数とし,$p$を正の有理数とする.座標平面上の$2$つの曲線$y=ax^p (x>0)$と$y=\log x (x>0)$を考える.この$2$つの曲線の共有点が$1$点のみであるとし,その共有点を$\mathrm{Q}$とする.以下の問いに答えよ.必要であれば,$\displaystyle \lim_{x \to \infty} \frac{x^p}{\log x}=\infty$を証明なしに用いてよい.

(1)$a$および点$\mathrm{Q}$の$x$座標を$p$を用いて表せ.
(2)この$2$つの曲線と$x$軸で囲まれる図形を,$x$軸のまわりに$1$回転してできる立体の体積を$p$を用いて表せ.
(3)$(2)$で得られる立体の体積が$2 \pi$になるときの$p$の値を求めよ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
京都大学 国立 京都大学 2015年 第1問
$2$つの関数$\displaystyle y=\sin \left( x+\frac{\pi}{8} \right)$と$y=\sin 2x$のグラフの$\displaystyle 0 \leqq x \leqq \frac{\pi}{2}$の部分で囲まれる領域を,$x$軸のまわりに$1$回転させてできる立体の体積を求めよ.
スポンサーリンク

「回転体の体積」とは・・・

 まだこのタグの説明は執筆されていません。