タグ「四面体」の検索結果

3ページ目:全225問中21問~30問を表示)
九州工業大学 国立 九州工業大学 2016年 第1問
四面体$\mathrm{OABC}$の面はすべて合同であり,$\mathrm{OA}=5$,$\mathrm{OB}=8$,$\mathrm{AB}=7$である.$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$,$\overrightarrow{c}=\overrightarrow{\mathrm{OC}}$として,次に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$および$\overrightarrow{c} \cdot \overrightarrow{a}$を求めよ.
(2)$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,$\alpha$上の点$\mathrm{H}$を直線$\mathrm{CH}$と$\alpha$が垂直になるように選ぶ.$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)$(2)$の点$\mathrm{H}$に対して,線分$\mathrm{CH}$の長さを求めよ.
(4)四面体$\mathrm{OABC}$の体積$V_1$を求めよ.また,辺$\mathrm{OC}$の中点を$\mathrm{D}$とし,さらに辺$\mathrm{OB}$上に点$\mathrm{E}$を$\mathrm{AE}+\mathrm{ED}$が最小となるようにとる.このとき,四面体$\mathrm{OAED}$の体積$V_2$を求めよ.
山口大学 国立 山口大学 2016年 第4問
点$\mathrm{O}(0,\ 0,\ 0)$と点$\mathrm{A}(1,\ 0,\ 0)$に対して,点$\mathrm{B}(b_1,\ b_2,\ 0)$と点$\mathrm{C}(c_1,\ c_2,\ c_3)$は
\[ \angle \mathrm{AOB}=\angle \mathrm{BOC}=\angle \mathrm{COA}=\frac{3\pi}{5},\quad |\overrightarrow{\mathrm{OB|}}=|\overrightarrow{\mathrm{OC|}}=1 \]
を満たしているとする.$b_2>0$,$c_3>0$,また,$\displaystyle p=2 \cos \frac{\pi}{5}$とするとき,以下の問いに答えなさい.ただし,次の等式$①$を証明なしに用いてもよい.
\[ 4 \cos \frac{2\pi}{5} \cos \frac{\pi}{5}=1 \cdots\cdots ① \]

(1)等式$p^2=p+1$が成り立つことを示しなさい.
(2)$\displaystyle b_1=\frac{1-p}{2}$であることを示しなさい.
(3)点$\mathrm{E}(0,\ 0,\ 1)$に対して,$\overrightarrow{\mathrm{OC}}$を実数$k,\ l,\ m$を用いて
\[ \overrightarrow{\mathrm{OC}}=k \overrightarrow{\mathrm{OA}}+l \overrightarrow{\mathrm{OB}}+m \overrightarrow{\mathrm{OE}} \]
と表すとき,$\displaystyle m^2=\frac{2+p}{5}$であることを示しなさい.
(4)四面体$\mathrm{OABC}$の体積を$V$とする.$\displaystyle V=\frac{p}{12}$であることを示しなさい.
山梨大学 国立 山梨大学 2016年 第2問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおき,$|\overrightarrow{a|}=2$,$|\overrightarrow{b|}=\sqrt{3}$,$|\overrightarrow{c|}=1$,$\overrightarrow{a} \cdot \overrightarrow{b}=2$,$\displaystyle \overrightarrow{b} \cdot \overrightarrow{c}=\frac{4}{3}$,$\displaystyle \overrightarrow{c} \cdot \overrightarrow{a}=\frac{4}{3}$を満たすとする.点$\mathrm{C}$から平面$\mathrm{OAB}$に垂線を下ろし,平面$\mathrm{OAB}$との交点を$\mathrm{H}$とする.

(1)ベクトル$\overrightarrow{\mathrm{OH}}$を,$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)四面体$\mathrm{OABC}$の体積$V$を求めよ.
(3)辺$\mathrm{BC}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$を$4:1$に内分する点を$\mathrm{N}$とする.このとき,直線$\mathrm{CH}$と直線$\mathrm{ON}$が交わることを示せ.また,その$2$直線の交点を$\mathrm{P}$とするとき,$\mathrm{CP}:\mathrm{PH}$を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
岩手大学 国立 岩手大学 2016年 第1問
次の問いに答えよ.

(1)$2$次関数$y=x^2-2ax+a+2$の最小値が負であるような定数$a$の範囲を求めよ.
(2)$\mathrm{A}$チームと$\mathrm{B}$チームがサッカーの試合を$7$回行う.どの試合でも,$\mathrm{A}$チームが勝つ確率は$\displaystyle \frac{1}{2}$,$\mathrm{B}$チームが勝つ確率は$\displaystyle \frac{1}{6}$,引き分けとなる確率は$\displaystyle \frac{1}{3}$であるとして,$\mathrm{A}$チームの試合結果が$3$勝$2$敗$2$引き分けとなる確率を求めよ.
(3)四面体$\mathrm{OABC}$において,

$\mathrm{BC}=30$,$\mathrm{CA}=26$,$\displaystyle \cos \angle \mathrm{BAC}=\frac{5}{13}$,
$\mathrm{OA}=18$,$\angle \mathrm{OAB}=\angle \mathrm{OAC}={90}^\circ$

であるとき,辺$\mathrm{AB}$の長さおよび四面体$\mathrm{OABC}$の体積を求めよ.
電気通信大学 国立 電気通信大学 2016年 第3問
座標空間に$3$点$\mathrm{A}(-1,\ -1,\ 2)$,$\mathrm{B}(1,\ 1,\ 2)$,$\mathrm{C}(1,\ -1,\ -2)$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,原点$\mathrm{O}$を中心として$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面を$S$とするとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$,$\overrightarrow{\mathrm{CM}}$をそれぞれ成分で表せ.
(2)$\angle \mathrm{AMC}$の大きさ$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めよ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)原点$\mathrm{O}$から三角形$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろす.線分$\mathrm{OH}$の長さを求めよ.
(5)点$\mathrm{P}$が球面$S$上を動くとき,四面体$\mathrm{ABCP}$の体積の最大値を求めよ.
福井大学 国立 福井大学 2016年 第2問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$,$\mathrm{OB}$,$\mathrm{OC}$のどの$2$辺も互いに直交し,長さがすべて$1$である.$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上に点$\mathrm{D}$を
\[ \mathrm{OD}=1,\quad 0^\circ<\angle \mathrm{BOD}<{90}^\circ,\quad 0^\circ<\angle \mathrm{COD}<{90}^\circ \]
となるようにとり,$\angle \mathrm{BOD}=\theta$,$\cos \theta=x$とおく.線分$\mathrm{AB}$を$(x+2):x$に外分する点を$\mathrm{E}$,線分$\mathrm{AC}$を$x:(1-x)$に内分する点を$\mathrm{F}$,三角形$\mathrm{DEF}$の重心を$\mathrm{G}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OD}}$を,$x,\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また,$\overrightarrow{\mathrm{OG}}$を,$x,\ \overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.
(2)点$\mathrm{G}$が$3$点$\mathrm{O}$,$\mathrm{B}$,$\mathrm{C}$を通る平面上にあるような$x$の値を求めよ.
(3)$\overrightarrow{\mathrm{OG}}$と$\overrightarrow{\mathrm{DF}}$の内積の最小値と,そのときの$x$の値を求めよ.
同志社大学 私立 同志社大学 2016年 第3問
座標空間内の$2$点$\mathrm{A}(0,\ 1,\ 5)$,$\mathrm{B}(5,\ 6,\ 0)$を通る直線を$\ell$とする.点$\mathrm{P}(4,\ 8,\ 13)$および直線$\ell$上の$2$点$\mathrm{Q}$,$\mathrm{R}$を頂点とする$\triangle \mathrm{PQR}$が正三角形であるとする.次の問いに答えよ.

(1)直線$\ell$に,点$\mathrm{P}$から垂線を下ろし,直線$\ell$との交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
(2)正三角形$\triangle \mathrm{PQR}$の一辺の長さを求めよ.
(3)四面体$\mathrm{PQRS}$が正四面体になるようなすべての点$\mathrm{S}$の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
四面体$\mathrm{OABC}$の$4$つの面はすべて合同であり,$\mathrm{OA}=\sqrt{10}$,$\mathrm{OB}=2$,$\mathrm{OC}=3$であるとする.このとき,$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}=[ニ]$であり,三角形$\mathrm{ABC}$の面積は$[ヌ]$である.

いま,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に垂線$\mathrm{OH}$を下ろす.$\overrightarrow{\mathrm{AH}}$は$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて$\overrightarrow{\mathrm{AH}}=[ネ]$と表される.また,四面体$\mathrm{OABC}$の体積は$[ノ]$である.
次に,線分$\mathrm{AH}$と線分$\mathrm{BC}$の交点を$\mathrm{P}$,点$\mathrm{P}$から線分$\mathrm{AC}$に下ろした垂線を$\mathrm{PQ}$とすると,$\mathrm{PQ}$の長さは$[ハ]$である.また,$2$点$\mathrm{P}$,$\mathrm{Q}$を通り平面$\alpha$に垂直な平面による四面体$\mathrm{OABC}$の切り口の面積は$[ヒ]$である.

(図は省略)
日本女子大学 私立 日本女子大学 2016年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$の中点を$\mathrm{P}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{Q}$,辺$\mathrm{BC}$を$1:2$に内分する点を$\mathrm{R}$とする.$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通る平面が辺$\mathrm{AC}$と交わる点を$\mathrm{S}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,以下の問いに答えよ.

(1)$5$つのベクトル$\overrightarrow{\mathrm{OP}}$,$\overrightarrow{\mathrm{OQ}}$,$\overrightarrow{\mathrm{OR}}$,$\overrightarrow{\mathrm{QP}}$,$\overrightarrow{\mathrm{QR}}$を,それぞれ$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$の式で表せ.
(2)$\overrightarrow{\mathrm{QS}}=k \overrightarrow{\mathrm{QP}}+l \overrightarrow{\mathrm{QR}}$を満たす定数$k$と$l$の値,および$\mathrm{AS}:\mathrm{SC}$を求めよ.
スポンサーリンク

「四面体」とは・・・

 まだこのタグの説明は執筆されていません。