タグ「四角形」の検索結果

1ページ目:全232問中1問~10問を表示)
東京海洋大学 国立 東京海洋大学 2016年 第3問
座標平面上に放物線$C:y=x^2$がある.点$\mathrm{P}(t,\ t^2)$(ただし,$t>0$)における$C$の接線を$\ell$とし,$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{M}$,$\mathrm{N}$とする.$\mathrm{M}$を通り$\ell$と直交する直線が,$y$軸,直線$x=t$と交わる点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とする.

(1)$\angle \mathrm{QPR}$は$\ell$により二等分されることを示せ.
(2)$\triangle \mathrm{PQR}$が正三角形になるような$t$の値を求めよ.
(3)四角形$\mathrm{PQNR}$の面積を$S_1$とし,線分$\mathrm{PQ}$,$y$軸および$C$で囲まれる図形の面積を$S_2$とする.$(2)$のとき,$\displaystyle \frac{S_2}{S_1}$の値を求めよ.
広島大学 国立 広島大学 2016年 第2問
四角形$\mathrm{ABCD}$において,
\[ \angle \mathrm{DAB}=\angle \mathrm{DBC}={90}^\circ,\quad \angle \mathrm{BCD}={60}^\circ,\quad \mathrm{AB}=\mathrm{AD},\quad \mathrm{BC}=1 \]
とする.次の問いに答えよ.

(1)対角線$\mathrm{BD}$の長さの$2$乗$\mathrm{BD}^2$を求めよ.
(2)対角線$\mathrm{AC}$の長さの$2$乗$\mathrm{AC}^2$を求めよ.
(3)$\angle \mathrm{BAC}=\alpha$,$\angle \mathrm{ACD}=\beta$とおくとき,$\cos^2 \alpha,\ \cos^2 \beta$を求めよ.
東北大学 国立 東北大学 2016年 第4問
鋭角三角形$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から各対辺に垂線$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$を下ろす.これらの垂線は垂心$\mathrm{H}$で交わる.このとき,以下の問いに答えよ.

(1)四角形$\mathrm{BCEF}$と$\mathrm{AFHE}$が円に内接することを示せ.
(2)$\angle \mathrm{ADE}=\angle \mathrm{ADF}$であることを示せ.
東北大学 国立 東北大学 2016年 第1問
鋭角三角形$\triangle \mathrm{ABC}$において,頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$から各対辺に垂線$\mathrm{AD}$,$\mathrm{BE}$,$\mathrm{CF}$を下ろす.これらの垂線は垂心$\mathrm{H}$で交わる.このとき,以下の問いに答えよ.

(1)四角形$\mathrm{BCEF}$と$\mathrm{AFHE}$が円に内接することを示せ.
(2)$\angle \mathrm{ADE}=\angle \mathrm{ADF}$であることを示せ.
千葉大学 国立 千葉大学 2016年 第4問
$a$は$0<a<2$を満たす定数とする.$0 \leqq t \leqq 1$を満たす実数$t$に対して,座標平面上の$4$点$\mathrm{A}(t,\ 0)$,$\mathrm{B}(2,\ t^2)$,$\mathrm{C}(2-t,\ 2)$,$\mathrm{D}(0,\ 2-at)$を考える.このとき,四角形$\mathrm{ABCD}$の面積$S(t)$が最小となるような$t$の値を求めよ.
千葉大学 国立 千葉大学 2016年 第5問
$a$は$0<a<2$を満たす定数とする.$0 \leqq t \leqq 1$を満たす実数$t$に対して,座標平面上の$4$点$\mathrm{A}(t,\ 0)$,$\mathrm{B}(2,\ t^2)$,$\mathrm{C}(2-t,\ 2)$,$\mathrm{D}(0,\ 2-at)$を考える.このとき,四角形$\mathrm{ABCD}$の面積$S(t)$が最小となるような$t$の値を求めよ.
小樽商科大学 国立 小樽商科大学 2016年 第4問
曲線$\displaystyle y=-x^2+\frac{3}{2}$上の点$\mathrm{P}(x,\ y) (y \geqq 0)$から原点$\mathrm{O}$が中心で半径が$1$である円に$2$本の接線を引き,それらの接点を$\mathrm{A}$,$\mathrm{B}$とする.四角形$\mathrm{PAOB}$の面積の最大値$M$,最小値$m$とそれらを与える点$\mathrm{P}$の座標をそれぞれ求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第3問
$4$つの複素数$z_1,\ z_2,\ z_3,\ z_4$は互いに異なり,その絶対値はすべて$1$であるとする.

(1)$z_1,\ z_2,\ z_3$を頂点とする複素数平面上の三角形が正三角形のとき,$z_1+z_2+z_3=0$となることを示せ.
(2)$z_1+z_2+z_3=0$が成り立つとき,$z_1,\ z_2,\ z_3$を頂点とする複素数平面上の三角形は正三角形であることを示せ.
(3)$z_1+z_2+z_3+z_4=0$が成り立つとき,$z_1,\ z_2,\ z_3,\ z_4$を頂点とする複素数平面上の四角形は長方形であることを示せ.
千葉大学 国立 千葉大学 2016年 第3問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
千葉大学 国立 千葉大学 2016年 第4問
座標平面上にすべての内角が${180}^\circ$未満の四角形$\mathrm{ABCD}$がある.原点を$\mathrm{O}$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OD}}=\overrightarrow{d}$とおく.$k$は$0 \leqq k \leqq 1$を満たす定数とする.$0$以上の実数$s,\ t,\ u$が$k+s+t+u=1$を満たしながら変わるとき
\[ \overrightarrow{\mathrm{OP}}=k \overrightarrow{a}+s \overrightarrow{b}+t \overrightarrow{c}+u \overrightarrow{d} \]
で定められる点$\mathrm{P}$の存在範囲を$E(k)$とする.

(1)$E(1)$および$E(0)$を求めよ.

(2)$\displaystyle E \left( \frac{1}{3} \right)$を求めよ.

(3)対角線$\mathrm{AC}$,$\mathrm{BD}$の交点を$\mathrm{M}$とする.どの$\displaystyle E(k) \left( \frac{1}{3} \leqq k \leqq \frac{1}{2} \right)$にも属するような点$\mathrm{P}$を考える.このような点$\mathrm{P}$が存在するための必要十分条件を,線分$\mathrm{AC}$,$\mathrm{AM}$の長さを用いて答えよ.
スポンサーリンク

「四角形」とは・・・

 まだこのタグの説明は執筆されていません。