タグ「周り」の検索結果

3ページ目:全89問中21問~30問を表示)
名古屋工業大学 国立 名古屋工業大学 2015年 第4問
四面体$\mathrm{ABCD}$は

$(ⅰ)$ $\mathrm{BA}=\sqrt{66}$,$\mathrm{BC}=7$,$\mathrm{BD}=\sqrt{65}$
$(ⅱ)$ $\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}=28$,$\overrightarrow{\mathrm{BC}} \cdot \overrightarrow{\mathrm{BD}}=35$,$\overrightarrow{\mathrm{BD}} \cdot \overrightarrow{\mathrm{BA}}=40$

を満たす.頂点$\mathrm{A}$から平面$\mathrm{BCD}$に下ろした垂線を$\mathrm{AH}$とする.

(1)辺$\mathrm{AC}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{BH}}$を$\overrightarrow{\mathrm{BC}}$,$\overrightarrow{\mathrm{BD}}$を用いて表せ.
(3)線分$\mathrm{CH}$の長さを求めよ.
(4)面$\mathrm{ABC}$を直線$\mathrm{AH}$の周りに$1$回転させるとき,面$\mathrm{ABC}$が通過する部分の体積$V$を求めよ.
鳥取大学 国立 鳥取大学 2015年 第4問
$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$において,$2$曲線$y=\cos x$,$y=\sin 2x$で囲まれた図形を$x$軸の周りに$1$回転してできる立体の体積$V$を求めたい.次の問いに答えよ.

(1)$2$曲線$y=\cos x$,$y=\sin 2x$の交点の$x$座標をすべて求めよ.ただし,$\displaystyle -\frac{\pi}{2} \leqq x \leqq \frac{\pi}{2}$とする.
(2)体積$V$を求めよ.
福岡教育大学 国立 福岡教育大学 2015年 第4問
次の問いに答えよ.ただし,対数は自然対数とする.

(1)関数$f(x)=x-\log x$の最小値を求めよ.
(2)$a$を$1$より大きい定数とし,曲線$\displaystyle y=a \sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=\tan x$ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$によって囲まれる部分$D$の面積が$1-\log 2$であるとする.次の(ア),(イ)に答えよ.

\mon[(ア)] $a$の値を求めよ.
\mon[(イ)] $D$を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
富山大学 国立 富山大学 2015年 第1問
曲線$\displaystyle C_1:y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$と曲線$\displaystyle C_2:y=2 \sin x \left( 0 \leqq x<\frac{\pi}{2} \right)$を考える.曲線$C_1$と曲線$C_2$で囲まれた図形を$x$軸の周りに$1$回転させてできる回転体の体積を求めよ.
群馬大学 国立 群馬大学 2015年 第5問
すべての実数$x$において,関数$f(x)$は微分可能で,その導関数$f^\prime(x)$は連続とする.$f(x)$,$f^\prime(x)$が等式
\[ \int_0^x \sqrt{1+\left( f^\prime(t) \right)^2} \, dt=-e^{-x}+f(x) \]
を満たすとき,以下の問いに答えよ.

(1)$f(x)$を求めよ.
(2)曲線$y=f(x)$と直線$x=1$,および$x$軸,$y$軸で囲まれた部分を,$y$軸の周りに$1$回転させてできる立体の体積を求めよ.
福岡教育大学 国立 福岡教育大学 2015年 第4問
$a$を正の定数とし,曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$y$軸によって囲まれる部分の面積が$\sqrt{3}-1$であるとする.次の問いに答えよ.

(1)$a$の値を求めよ.
(2)曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$の交点を求めよ.
(3)曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$と$y$軸によって囲まれる部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
滋賀医科大学 国立 滋賀医科大学 2015年 第1問
$a$を定数とする.$x>0$における関数
\[ f(x)=\log x+ax^2-3x \]
について,曲線$y=f(x)$は$\displaystyle x=\frac{1}{\sqrt{2}}$で変曲点をもつとする.

(1)$a$を求めよ.
(2)$k$を定数とするとき,方程式$f(x)=k$の異なる実数解の個数を求めよ.
(3)曲線$y=f(x)$と$x$軸,および$2$直線$x=1$,$x=2$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第6問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
慶應義塾大学 私立 慶應義塾大学 2015年 第1問
$a>0$とし,関数$f(x)$を
\[ f(x)=-a \cos x+\frac{1}{2}a^2 \cos 2x \qquad (-\pi<x<\pi) \]
と定める.

(1)$f(x)$の最小値は,$a \leqq [ア]$のとき$[イ]$であり,$a \geqq [ア]$のとき$[ウ]$である.ただし,$[ア]$には数,$[イ]$と$[ウ]$には$a$の多項式を記入すること.
(2)曲線$y=f(x)$が$x$軸と接するのは$a=[エ]$のときである.
(3)$a=[エ]$とする.曲線$y=f(x)$と$x$軸で囲まれた部分の面積は$[オ]$であり,その部分を$x$軸の周りに$1$回転させてできる立体の体積は$[カ]$である.
スポンサーリンク

「周り」とは・・・

 まだこのタグの説明は執筆されていません。