タグ「向き」の検索結果

2ページ目:全74問中11問~20問を表示)
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
西南学院大学 私立 西南学院大学 2015年 第3問
以下の問に答えよ.

(1)直線$\displaystyle y=\frac{1}{2}x$を原点のまわりに正の向きに$\displaystyle \frac{\pi}{4}$だけ回転した直線の方程式は$y=[チ]x$である.
(2)$2$点$\mathrm{A}(-1,\ 5)$,$\mathrm{B}(3,\ 2)$に対して,直線$y=mx-2m-1$が線分$\mathrm{AB}$(両端を含む)と共有点をもつような定数$m$の範囲は,$m \leqq [ツテ]$,$m \geqq [ト]$である.
(3)$2$点$\mathrm{C}(2,\ 1)$,$\mathrm{D}(5,\ 4)$に対して,$\mathrm{CP}:\mathrm{DP}=1:2$となるような点$\mathrm{P}(x,\ y)$の軌跡の方程式は,$\displaystyle \left( x-[ナ] \right)^2+\left( y-[ニ] \right)^2=[ヌ]$である.
上智大学 私立 上智大学 2015年 第4問
$xyz$空間において,$xy$平面上に$4$点
\[ \mathrm{A}_1(1,\ 0,\ 0),\quad \mathrm{B}_1(0,\ 1,\ 0),\quad \mathrm{C}_1(-1,\ 0,\ 0),\quad \mathrm{D}_1(0,\ -1,\ 0) \]
を頂点とする正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$がある.$0<\theta<\pi$とし,この正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$を$xy$平面上で原点を中心に角$\theta$だけ回転させた後で$z$軸の正の方向に$2$だけ平行移動した正方形を$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とする.

動点$\mathrm{P}_1$,$\mathrm{P}_2$が,それぞれ点$\mathrm{A}_1$,$\mathrm{A}_2$から同時に出発し,正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$の周上を,同じ速さで同じ向きに一周する.このとき,線分$\mathrm{P}_1 \mathrm{P}_2$が動いてできる曲面と正方形$\mathrm{A}_1 \mathrm{B}_1 \mathrm{C}_1 \mathrm{D}_1$,$\mathrm{A}_2 \mathrm{B}_2 \mathrm{C}_2 \mathrm{D}_2$とで囲まれる立体を$V$とする.

(1)線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最大値は$\sqrt{[ト]+[ナ] [き]}$であり,線分$\mathrm{P}_1 \mathrm{P}_2$の長さの最小値は$\sqrt{[ニ]+[ヌ] [く]}$である.
(2)$0<h<2$とするとき,平面$z=h$による立体$V$の断面は,一辺の長さが
\[ \sqrt{[ネ]+\left( [ノ]h^2+[ハ]h \right) \left( 1-[け] \right)} \]
の正方形であり,その一辺の長さは$h=[ヒ]$のとき最小である.

(3)立体$V$の体積は$\displaystyle \frac{[フ]}{[ヘ]}+\frac{[ホ]}{[マ]} [こ]$である.

(4)$\theta$が$\pi$に限りなく近づくとき,立体$V$の体積は$\displaystyle \frac{[ミ]}{[ム]}$に収束する.
\begin{screen}
$[き]$~$[こ]$の選択肢:

$\mathrm{(a)} \ \sin \theta \quad \mathrm{(b)} \ \cos \theta \quad \mathrm{(c)} \ \tan \theta \quad \mathrm{(d)} \ \sin^2 \theta \quad \mathrm{(e)} \ \cos \theta \sin \theta$
$\displaystyle \mathrm{(f)} \ \frac{1}{\sin \theta} \quad \mathrm{(g)} \ \frac{1}{\cos \theta} \quad \mathrm{(h)} \ \frac{1}{\tan \theta}$

\end{screen}
(図は省略)
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第3問
$xyz$空間の原点を$\mathrm{O}$とし,点$(0,\ 0,\ 1)$と点$(\sqrt{3},\ 1,\ 1)$を通る直線を$\ell$とする.点$\mathrm{P}$は,時刻$t=0$のとき$(-4,\ 0,\ 0)$にあって,$x$軸上を正の向きに速さ$1$で動いている.点$\mathrm{Q}$は,$t=0$のとき$(0,\ 0,\ 1)$にあって,直線$\ell$上を$x$座標が増えるように速さ$2$で動いている.

(1)点$\mathrm{P}$,$\mathrm{Q}$の座標を$t$の式で表せ.
(2)三角形$\mathrm{OPQ}$の面積$S$を$t$の式で表せ.
(3)$-0.33 \leqq t \leqq 2.6$のときの$S$の最大値と最小値,およびそれらをとる$t$の値を求めよ.
兵庫県立大学 公立 兵庫県立大学 2015年 第5問
\begin{mawarikomi}{45mm}{
(図は省略)
}
図に示すように,ある円の周上に$4$つの円板$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$が置かれ,円の中心には円板$\mathrm{K}$が置かれている.当初$\mathrm{A}$には$\bullet$で示される小石が置かれている.この状態から,順次サイコロを振り以下の手順で小石を移動し小石の位置取りを繰り返す.

(i) 現在$\mathrm{K}$に小石がある場合は,出た目の数にかかわらず,新たな位置取りはそのまま$\mathrm{K}$とする.
(ii) 出た目の数が$1$または$2$の場合,小石を現在の場所から$\mathrm{K}$に移動する.
(iii) 出た目の数が$3$の場合,小石を現在の場所から反時計回り,すなわち,$\mathrm{A} \to \mathrm{B} \to \mathrm{C} \to \mathrm{D} \to \mathrm{A}$の向きで,隣接する円板に移動する.
\mon[$\tokeishi$] 出た目の数が$4$以上の場合,小石を現在の場所から時計回り,すなわち,$\mathrm{A} \to \mathrm{D} \to \mathrm{C} \to \mathrm{B} \to \mathrm{A}$の向きで,隣接する円板に移動する.

\end{mawarikomi}
次の問に答えなさい.

(1)$n$回目の位置取り後,小石が$\mathrm{K}$にある確率を$k_n$と表す.$k_n$を求めなさい.
(2)偶数回位置取りを行った場合,小石は$\mathrm{K}$になければ$\mathrm{A}$または$\mathrm{C}$にあることを示しなさい.
(3)$n$回目の位置取り後,小石が$\mathrm{A}$にある確率を$a_n$と表す.$a_2$を求めなさい.また,$a_{2n+2}$を$a_{2n}$および$k_{2n}$を用いて表しなさい.
(4)$a_n$を求めなさい.
山形大学 国立 山形大学 2014年 第1問
数直線上に点$\mathrm{P}$があり,最初は原点に位置している.点$\mathrm{P}$を次の試行にしたがって数直線上を動かす.

$(ⅰ)$ 赤い玉が$2$個,白い玉が$1$個入った袋から玉を$1$個取り出す.
$(ⅱ)$ 取り出した玉の色が赤ならば,点$\mathrm{P}$を正の向きに$1$だけ動かす.
$(ⅲ)$ 取り出した玉の色が白ならば,点$\mathrm{P}$を負の向きに$1$だけ動かす.
$\tokeishi$ 取り出した玉は袋に戻す.

このとき,次の問に答えよ.

(1)この試行を$2$回くりかえしたとき,点$\mathrm{P}$の座標の期待値を求めよ.
(2)試行の回数が$4$回以内で,点$\mathrm{P}$の座標が$2$になる確率を求めよ.
(3)試行を$n$回行っても点$\mathrm{P}$の座標が$1$度も$-2$にも$2$にもならない確率を求めよ.
(4)試行を$n$回行うとき,点$\mathrm{P}$の座標が$1$度も$-2$にならず,ちょうど$n$回目に初めて$2$になる確率を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
秋田大学 国立 秋田大学 2014年 第3問
原点$\mathrm{O}$を中心とする半径$1$の円$C$上の点を$\mathrm{P}$とし,線分$\mathrm{OP}$と$x$軸の正の向きとのなす角を$\theta$とする.ただし,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする.また,$C$上の点$\mathrm{Q}$を,線分$\mathrm{OQ}$と$x$軸の正の向きとのなす角が$\displaystyle \frac{\theta}{2}$となる点とする.このとき,次の問いに答えよ.

(1)直線$\mathrm{OQ}$と直線$x=1$との交点を$(1,\ t)$とするとき,$\mathrm{P}$の座標を$t$を用いて表せ.
(2)$\mathrm{P}$から$x$軸におろした垂線の交点を$\mathrm{H}$とする.$\triangle \mathrm{OPH}$の三辺の長さの和を$\theta$で表す関数を$r(\theta)$とするとき,関数$\displaystyle y=\frac{1}{r(\theta)}$のグラフをかけ.ただし,横軸に$\theta$,縦軸に$y$をとるものとする.
(3)定積分$\displaystyle \int_0^{\frac{\pi}{2}} \frac{1}{r(\theta)} \, d\theta$を求めよ.
スポンサーリンク

「向き」とは・・・

 まだこのタグの説明は執筆されていません。