タグ「各面」の検索結果

1ページ目:全12問中1問~10問を表示)
立教大学 私立 立教大学 2016年 第1問
次の空欄$[ア]$~$[ク]$に当てはまる数または式を記入せよ.

(1)赤と青の$2$色を両方とも必ず用いて,正四面体の各面を塗り分ける場合の数は$[ア]$通りである.ただし,回転して一致する場合は同じものとみなす.
(2)$n$を$1 \leqq n \leqq 16$を満たす整数とする.$5n$を$17$で割ったときの余りが$1$となるとき,$n=[イ]$である.
(3)$A=\log_4 120-\log_4 6-\log_4 10$を計算すると,$A=[ウ]$である.
(4)$k$を実数とし,$2$次方程式$x^2+kx-1=0$の$2$つの解を$\alpha,\ \beta$とする.$2$次方程式$x^2-(k+4)x+1=0$が$2$つの解$\alpha^2$と$\beta^2$を持つとき,$k$の値をすべて求めると,$k=[エ]$である.
(5)$a,\ b$を実数とする.$x$の$2$次式$f(x)$が,$x^2 f^\prime(x)-f(x)=x^3+ax^2+bx$を満たすとき,$a+b=[オ]$である.
(6)三角形$\mathrm{ABC}$の辺の長さがそれぞれ$\mathrm{AB}=2$,$\mathrm{BC}=3$,$\mathrm{CA}=4$のとき,三角形$\mathrm{ABC}$に内接する円の半径は$[カ]$である.
(7)$\displaystyle 0 \leqq \theta<\frac{\pi}{2}$において,$\tan \theta=2$が成り立つとき,$\cos \theta=[キ]$である.
(8)曲線$y=x^3-x^2+x+1$と曲線$y=x^3-2x^2+5x-2$で囲まれた図形の面積は$[ク]$である.
近畿大学 私立 近畿大学 2016年 第1問
正$n$面体の各面に$1$から$n$の数字を$1$つずつ書き,$n$面のさいころ($n$面ダイス)を作る.ただし回転させて一致するものは同じ$n$面ダイスとみなす.

(1)$n$は$5$つの値をとる.それらの和は$[ア]$である.
(2)数字の書き方は$n=4$のとき$[イ]$通り,$n=6$のとき$[ウ]$通り,$n=8$のとき$[エ]$通り存在する.
(3)$n$面ダイスのそれぞれの目の出る確率は$\displaystyle \frac{1}{n}$とする.

(i) $4$面ダイスと$8$面ダイスを投げて,出た目の積が$4$の倍数となる確率は$[オ]$である.
(ii) $4$面ダイスと$6$面ダイスと$8$面ダイスを投げて,出た目の積が$100$以上となる確率は$[カ]$である.
大阪市立大学 公立 大阪市立大学 2016年 第2問
さいころの$6$つの面の中から$2$面を選んで赤色に塗る.残った$4$面の中から$2$面を選んで黒色に塗る.最後に残った$2$面は白色に塗る.なお,色を塗っても,さいころの目は判別できるものとする.このとき次の問いに答えよ.

(1)上のような各面への色の塗り分け方は全部で何通りあるか.
(2)赤い面が向かい合うような,各面への色の塗り分け方は何通りあるか.
(3)赤い面が隣り合うような,各面への色の塗り分け方は何通りあるか.
(4)同じ色の面がすべて隣り合うような,各面への色の塗り分け方は何通りあるか.
(5)同じ色の面がすべて向かい合うような,各面への色の塗り分け方は何通りあるか.
東京海洋大学 国立 東京海洋大学 2014年 第4問
箱の中に赤球,青球,黄球,緑球が各$1$個ずつ入っている.この箱から球を取り出し,取り出した球の色をサイコロの$1$の面に塗り,球を箱にもどす.以下,同様の作業を繰り返し,箱から取り出した球の色をサイコロの$2$から$6$の各面に順に塗っていく.ただし,サイコロは立方体であり$2$つの面は辺を共有するとき「隣り合う」という.このとき次の問に答えよ.

(1)サイコロが$3$色で塗られ,かつどの隣り合う$2$つの面の色も異なる確率を求めよ.
(2)サイコロのどの隣り合う$2$つの面の色も異なる確率を求めよ.
吉備国際大学 私立 吉備国際大学 2014年 第2問
正四角錐$\mathrm{O}$-$\mathrm{ABCD}$があり,$\mathrm{OA}=\mathrm{OB}=\mathrm{OC}=\mathrm{OD}=\mathrm{AB}=\mathrm{BC}=\mathrm{CD}=\mathrm{DA}=1$とする.

(1)$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CD}$,$\mathrm{DA}$の中点を$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とするとき$\mathrm{EF}=\mathrm{FG}=\mathrm{GH}=\mathrm{HE}$の長さを求めよ.
(2)$\triangle \mathrm{OAB}$,$\triangle \mathrm{OBC}$,$\triangle \mathrm{OCD}$,$\triangle \mathrm{ODA}$の重心を$\mathrm{I}$,$\mathrm{J}$,$\mathrm{K}$,$\mathrm{L}$とする.四角形$\mathrm{IJKL}$の面積を求めよ.
(3)一辺の長さ$1$の正八面体の各面の重心を頂点とする多面体の体積を求めよ.
吉備国際大学 私立 吉備国際大学 2014年 第2問
正二十面体のサイコロを考える.各面に$1$から$20$までの整数が一つずつ書いてある.

(1)このサイコロを$1$回ふるとき,出る目の数が素数である確率を求めよ.
(2)このサイコロを$1$回ふるとき,出る目の数が$3$の倍数である確率を求めよ.
(3)このようなサイコロを$2$回ふるとき,出る目の数の積が$3$の倍数であって$9$の倍数でない確率を求めよ.
長崎大学 国立 長崎大学 2013年 第4問
右図のような四面体$\mathrm{OABC}$がある.各面$\mathrm{ABC}$,$\mathrm{OBC}$,$\mathrm{OCA}$,$\mathrm{OAB}$の \\
重心を,それぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{S}$とし,辺$\mathrm{BC}$の中点を$\mathrm{M}$とする.また, \\
$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$,$\overrightarrow{\mathrm{OM}}=\overrightarrow{m}$とおく.次の問いに答えよ.
\img{713_2938_2013_1}{25}

(1)$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{m}$を用いて表せ.また,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$と$\overrightarrow{m}$を用いて表せ.
(2)線分$\mathrm{OP}$と線分$\mathrm{AQ}$の交点を$\mathrm{G}$とする.線分$\mathrm{OP}$上の点$\mathrm{U}$は,実数$s$を用いて,$\overrightarrow{\mathrm{OU}}=s \overrightarrow{\mathrm{OP}} (0 \leqq s \leqq 1)$と表され,線分$\mathrm{AQ}$上の点$\mathrm{V}$は,実数$t$を用いて,$\overrightarrow{\mathrm{OV}}=(1-t) \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OQ}} (0 \leqq t \leqq 1)$と表される.このことを利用して,$\overrightarrow{\mathrm{OG}}$を$\overrightarrow{a}$と$\overrightarrow{m}$を用いて表せ.
(3)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて$\overrightarrow{\mathrm{OG}}$を表せ.
(4)$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$の中から必要なものを用いて,$\overrightarrow{\mathrm{OR}}$および$\overrightarrow{\mathrm{OS}}$をそれぞれ表せ.また,点$\mathrm{G}$が線分$\mathrm{BR}$および線分$\mathrm{CS}$上にあることを示せ.
愛媛大学 国立 愛媛大学 2012年 第1問
次の問いに答えよ.

(1)$\displaystyle \frac{1}{2+\sqrt{3}+\sqrt{7}}$の分母を有理化せよ.
(2)方程式$4x^2-3x+k=0$の$2$つの解が$\sin \theta,\ \cos \theta$で与えられるとき,定数$k$の値を求めよ.
(3)関数$y=4^x-2^{x+2}+1$の$-1 \leqq x \leqq 3$における最大値と最小値を求めよ.
(4)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
愛媛大学 国立 愛媛大学 2012年 第2問
次の問いに答えよ.

(1)$a,\ b$を実数で,$a \neq 0$とする.$\displaystyle c=\frac{2+3ai}{a-bi}$が純虚数のとき,$b$と$c$の値を求めよ.
(2)定積分$\displaystyle \int_0^{2\pi} |x \cos \displaystyle\frac{x|{3}} \, dx$を求めよ.
(3)直方体の各面にさいころのように$1$から$6$までの目が書かれている.この直方体を投げて,$1,\ 6$の目が出る確率はともに$p$であり,$2,\ 3,\ 4,\ 5$の目が出る確率はいずれも$q$である.この直方体を$1$回投げて,出た目の数を得点とする.このとき,得点の期待値は$p,\ q$の値によらずに一定であることを示せ.
(4)座標平面上の曲線
\[ x=2 \cos \theta+1,\quad y=3 \sin \theta \quad (0 \leqq \theta \leqq 2\pi) \]
で囲まれた図形を$x$軸の回りに$1$回転して得られる回転体の体積を求めよ.
神奈川大学 私立 神奈川大学 2012年 第1問
次の空欄を適当に補え.

(1)方程式$8 \times 8^x+7 \times 4^x=2^x$の解は$x=[$(\mathrm{a])$}$である.
(2)$\mathrm{O}$を原点$(0,\ 0,\ 0)$とする.ベクトル$\overrightarrow{\mathrm{OP}}=(p,\ q,\ r)$が,$3$点$\mathrm{A}(1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 3)$を通る平面に垂直で,$|\overrightarrow{\mathrm{OP}}|=1$,$p>0$を満たしているとき,$\overrightarrow{\mathrm{OP}}=[$(\mathrm{b])$}$である.
(3)$a_1=8$,$\displaystyle a_{n+1}=\frac{5}{4}a_n-10 (n=1,\ 2,\ 3,\ \cdots)$によって定められる数列$\{a_n\}$の一般項は$a_n=[$(\mathrm{c])$}$である.
(4)正八面体の各面に$1$から$8$の数字を$1$つずつ書いた八面体サイコロが$2$つある.この$2$つを同時に投げたとき,少なくとも$1$つは$1$の目が出る確率は$[$(\mathrm{d])$}$である.

(5)関数$\displaystyle y=\frac{\log x}{x}$は,$x=[$(\mathrm{e])$}$のとき最大値をとる.

(6)$a \neq 0$とする.方程式$x^3-(a+1)x+a=0$が$1$以外の解を重解としてもつとき,$a=[$(\mathrm{f])$}$であり,そのときの重解は$x=[$(\mathrm{g])$}$である.
スポンサーリンク

「各面」とは・・・

 まだこのタグの説明は執筆されていません。