タグ「双曲線」の検索結果

1ページ目:全33問中1問~10問を表示)
滋賀医科大学 国立 滋賀医科大学 2016年 第3問
$a,\ b$を正の定数とし,$xy$平面上の双曲線
\[ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \]
を$H$とする.正の実数$r,\ s$に対して,円$C:(x-s)^2+y^2=r^2$を考える.

(1)$C$の中心が$H$の焦点の一つであるとき,すなわち$s=\sqrt{a^2+b^2}$のとき,$C$と$H$は$x>0$において高々$2$点しか共有点を持たないことを示せ.
(2)$C$と$H$が$x>0$において$4$点の共有点を持つような$(r,\ s)$の範囲を,$rs$平面上に図示せよ.
(3)$C$と$H$が$x>0$において$2$点で接するような$(r,\ s)$を考えるとき,極限$\displaystyle \lim_{r \to \infty} \frac{s}{r}$を求めよ.
福井大学 国立 福井大学 2016年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,$\mathrm{F}(5,\ 0)$と$\mathrm{F}^\prime(-5,\ 0)$とを焦点とし,直線$\ell:y=kx$と直線$\ell^\prime:y=-kx$とを漸近線とする双曲線$C$がある.$C$上に点$\mathrm{P}$をとるとき,以下の問いに答えよ.ただし,$k$は正の定数とする.

(1)双曲線$C$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,$\ell,\ \ell^\prime$に平行な直線をそれぞれ$m,\ m^\prime$とする.$4$つの直線$\ell,\ \ell^\prime,\ m,\ m^\prime$で囲まれた平行四辺形の面積を$S$とするとき,$S$は$C$上の点$\mathrm{P}$のとり方によらずに一定であることを示せ.
(3)$k=2$のとき,$\mathrm{PF} \cdot \mathrm{PF}^\prime=2 \mathrm{OP}^2$をみたす$C$上の点$\mathrm{P}$の座標を求めよ.ただし,$\mathrm{P}$は第$1$象限にあるものとする.
福井大学 国立 福井大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,$\mathrm{F}(5,\ 0)$を焦点の$1$つとし,直線$\ell:y=kx$と$\ell^\prime:y=-kx$とを漸近線にもつ双曲線$C$がある.ただし,$k>0$とする.$C$上の点$\mathrm{Q}(a,\ b)$を通り,$2$本の漸近線に平行な$2$直線のうち,傾きが正のものを$m$,傾きが負のものを$m^\prime$とする.$\ell$と$m^\prime$との交点を$\mathrm{P}$,$\ell^\prime$と$m$との交点を$\mathrm{R}$とし,四角形$\mathrm{OPQR}$の面積を$S$とおくとき,以下の問いに答えよ.

(1)双曲線$C$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{R}$の座標を,$a,\ b,\ k$を用いて表せ.
(3)$S$は点$\mathrm{Q}$のとり方によらないことを証明せよ.
(4)$k$が$k>0$の範囲を動くとき,$S$の最大値とそのときの$k$の値を求めよ.
北里大学 私立 北里大学 2016年 第3問
双曲線$\displaystyle \frac{x^2}{2}-y^2=1$に対し,双曲線上の点$\mathrm{P}(a,\ b)$における接線を$\ell$とする.ただし,$a>0$とする.

(1)$\ell$の方程式が$\displaystyle \frac{ax}{2}-by=1$で与えられることを示せ.
(2)$\ell$に垂直な双曲線の接線$m$が引けるための$a$の条件を求めよ.
(3)$a$が$(2)$の条件を満たすとする.双曲線上の点$\mathrm{Q}(c,\ d)$における接線が$\ell$に垂直に交わるように点$\mathrm{Q}$を定める.ただし,$d>0$とする.$\mathrm{O}$を原点とするとき,$\triangle \mathrm{OPQ}$の面積を最小にする$a$の値を求めよ.
日本医科大学 私立 日本医科大学 2016年 第1問
次の各問いに答えよ.

(1)円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{AB}=1+\sqrt{3}$,$\mathrm{BC}=\mathrm{CD}$,$\mathrm{DA}=2$,また$\angle \mathrm{DAB}={60}^\circ$である.四角形$\mathrm{ABCD}$の対角線の交点を$\mathrm{P}$,$\angle \mathrm{BCD}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{Q}$,$\mathrm{BD}$と$\mathrm{CQ}$の交点を$\mathrm{R}$とするとき,以下の各問いに答えよ.なお数値の分母は有理化すること.

(i) 辺$\mathrm{BD}$の長さを求めよ.
(ii) $\angle \mathrm{ABD}$の大きさを求めよ.
(iii) 辺$\mathrm{BP}$の長さを求めよ.
\mon[$\tokeishi$] 三角形$\mathrm{PQR}$の内接円の半径を求めよ.

(2)自然数$n$に対して,$n$を$3$で割った余りを$a_n$,$n^2$を$3$で割った余りを$b_n$とするとき,以下の各問いに答えよ.

(i) $\displaystyle \sum_{n=1}^{2016} (a_n+b_n)$の値を求めよ.
(ii) $\displaystyle \sum_{n=1}^m (a_{n+2}+b_{n+1}+2a_n)=2016$を満たす自然数$m$の値を求めよ.

(3)$\mathrm{O}$を原点とする座標平面上に,次のような双曲線$C$と直線$\ell_k$($k$は実数の定数)が与えられているとき,以下の各問いに答えよ.
\[ C:\frac{x^2}{4}-\frac{y^2}{3}=-1 \qquad \ell_k:3x-4y+k=0 \]

(i) $C$と$\ell_k$が接するような$k$の値を求めよ.
(ii) $C$上の点と直線$\ell_0:3x-4y=0$の距離の最小値を求めよ.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)初項が$a_1$で公差が$d$である等差数列$\{a_n\}$について,$a_{27}=20$,$a_{37}=15$が成り立っている.このとき,$a_1=[ア]$であり,$d=[イ]$である.したがって$a_1+a_2+a_3+\cdots +a_n=[ウ]$となる.
(2)$2$曲線$y=4^x (x \geqq 0)$と$y=8^x (x \geqq 0)$と直線$x=1$に囲まれた部分を$D$とする.$D$の面積は$[エ]$であり,$D$を$x$軸のまわりに$1$回転してできる回転体の体積は$[オ]$であり,$D$を$y$軸のまわりに$1$回転してできる回転体の体積は$[カ]$である.
(3)双曲線
\[ C:\frac{x^2}{9}-\frac{y^2}{4}=1 \]
上の点$\displaystyle \mathrm{P} \left( \frac{3}{\cos \theta},\ 2 \tan \theta \right) (0<\theta<\frac{\pi}{2})$における接線$\ell$の方程式は$[キ]$であり,法線$m$の方程式は$[ク]$である.また,$m$と$x$軸の交点を$(X,\ 0)$とし$m$と$y$軸の交点を$(0,\ Y)$とすると,$X$の範囲は$[ケ]$であり,$Y$の範囲は$[コ]$である.
大阪府立大学 公立 大阪府立大学 2016年 第3問
楕円$\displaystyle C_1:\frac{x^2}{9}+\frac{y^2}{5}=1$の焦点を$\mathrm{F}$,$\mathrm{F}^\prime$とする.ただし,$\mathrm{F}$の$x$座標は正である.正の実数$m$に対し,$2$直線$y=mx$,$y=-mx$を漸近線にもち,$2$点$\mathrm{F}$,$\mathrm{F}^\prime$を焦点とする双曲線を$C_2$とする.第$1$象限にある$C_1$と$C_2$の交点を$\mathrm{P}$とする.このとき,以下の問いに答えよ.

(1)$C_2$の方程式を$m$を用いて表せ.
(2)線分$\mathrm{FP}$および線分$\mathrm{F}^\prime \mathrm{P}$の長さを$m$を用いて表せ.
(3)$\angle \mathrm{F}^\prime \mathrm{PF}={60}^\circ$となる$m$の値を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第3問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
千葉大学 国立 千葉大学 2015年 第4問
双曲線$x^2-y^2=1 \cdots ①$の漸近線$y=x \cdots ②$上の点$\mathrm{P}_0:(a_0,\ a_0)$(ただし$a_0>0$)を通る双曲線$①$の接線を考え,接点を$\mathrm{Q}_1$とする.$\mathrm{Q}_1$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_1:(a_1,\ a_1)$とする.次に$\mathrm{P}_1$を通る双曲線$①$の接線の接点を$\mathrm{Q}_2$,$\mathrm{Q}_2$を通り漸近線$②$と垂直に交わる直線と,漸近線$②$との交点を$\mathrm{P}_2:(a_2,\ a_2)$とする.この手続きを繰り返して同様にして点$\mathrm{P}_n:(a_n,\ a_n)$,$\mathrm{Q}_n$を定義していく.

(1)$\mathrm{Q}_n$の座標を$a_n$を用いて表せ.
(2)$a_n$を$a_0$を用いて表せ.
(3)$\triangle \mathrm{P}_n \mathrm{Q}_n \mathrm{P}_{n-1}$の面積を求めよ.
スポンサーリンク

「双曲線」とは・・・

 まだこのタグの説明は執筆されていません。