タグ「原点」の検索結果

8ページ目:全992問中71問~80問を表示)
茨城大学 国立 茨城大学 2016年 第1問
$a$を定数とし,関数$f(x)=(x-a)e^{\frac{x^2}{2}}$で表される曲線$y=f(x)$を$C$とする.ただし,$e$は自然対数の底とする.以下の各問に答えよ.

(1)$f(x)$の導関数$f^\prime(x)$を求めよ.
(2)$f(x)$が極値を持たないために$a$が満たすべき条件を求めよ.
(3)曲線$C$上の点$(t,\ f(t))$における接線の方程式を求めよ.
(4)$(3)$で求めた接線が原点を通るような$t$の値を考える.すべての実数の中で,そのような$t$の値が$3$つあるために$a$が満たすべき条件を求めよ.
長崎大学 国立 長崎大学 2016年 第4問
区間$-1 \leqq x \leqq 1$において,$2$つの関数$f(x)=x+\sqrt{1-x^2}$,$g(x)=x-\sqrt{1-x^2}$を考える.曲線$C_1:y=f(x)$と曲線$C_2:y=g(x)$で囲まれた図形を$D$とする.以下の問いに答えよ.

(1)関数$f(x)$の増減を調べ,その最大値と最小値を求めよ.
(2)曲線$C_1$は曲線$C_2$と原点に関して対称であることを示せ.
(3)区間$-1 \leqq x \leqq 1$において,$f(x)$と$-g(x)$の値の大小関係を調べよ.また,$g(x) \geqq 0$が成り立つような$x$の範囲を求めよ.
(4)図形$D$の$x \geqq 0$の部分を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
電気通信大学 国立 電気通信大学 2016年 第3問
座標空間に$3$点$\mathrm{A}(-1,\ -1,\ 2)$,$\mathrm{B}(1,\ 1,\ 2)$,$\mathrm{C}(1,\ -1,\ -2)$をとる.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,原点$\mathrm{O}$を中心として$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る球面を$S$とするとき,以下の問いに答えよ.

(1)ベクトル$\overrightarrow{\mathrm{OM}}$,$\overrightarrow{\mathrm{CM}}$をそれぞれ成分で表せ.
(2)$\angle \mathrm{AMC}$の大きさ$\theta$を$0 \leqq \theta \leqq \pi$の範囲で求めよ.
(3)三角形$\mathrm{ABC}$の面積を求めよ.
(4)原点$\mathrm{O}$から三角形$\mathrm{ABC}$に垂線$\mathrm{OH}$を下ろす.線分$\mathrm{OH}$の長さを求めよ.
(5)点$\mathrm{P}$が球面$S$上を動くとき,四面体$\mathrm{ABCP}$の体積の最大値を求めよ.
電気通信大学 国立 電気通信大学 2016年 第4問
関数
\[ f(x)=\frac{\log x}{\sqrt{x}} \quad (x>0) \]
に対して,曲線$C:y=f(x)$を考える.以下の問いに答えよ.ただし,$\log x$は$e$を底とする自然対数を表す.

(1)導関数$f^\prime(x)$を求めよ.さらに,$f(x)$の最大値とそのときの$x$の値$x_0$を求めよ.
(2)曲線$C$,$x$軸および直線$x=e$で囲まれた図形を$D$とする.$D$の面積$S$を求めよ.
(3)図形$D$を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
(4)曲線$C$上の点$(t,\ f(t))$における接線$\ell$を考える.$t>x_0$のとき,接線$\ell$が$x$軸,$y$軸と交わる点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.原点を$\mathrm{O}$として,三角形$\mathrm{OPQ}$の面積$g(t)$を$t$の式で表せ.
(5)極限値$\displaystyle \lim_{t \to \infty} \frac{g(t)}{\sqrt{t} \log t}$を求めよ.
福井大学 国立 福井大学 2016年 第4問
$a$を正の定数とし,$f(x)=(x+a) \log x$とする.曲線$C:y=f(x)$上の点$\mathrm{P}(a,\ f(a))$における接線$\ell$が原点を通るとき,以下の問いに答えよ.

(1)$a$の値と,接線$\ell$の方程式を求めよ.
(2)曲線$C$と$x$軸,および接線$\ell$とで囲まれた図形を,$y$軸の周りに$1$回転させてできる立体の体積$V$を求めよ.
(3)定数$k$が$\displaystyle k \geqq \frac{1}{a}$を満たすとき,関数$g(x)=(x+k) \log x$は極値を持たないことを示せ.
福井大学 国立 福井大学 2016年 第3問
原点を$\mathrm{O}$とする$xy$平面上に,$\mathrm{F}(5,\ 0)$と$\mathrm{F}^\prime(-5,\ 0)$とを焦点とし,直線$\ell:y=kx$と直線$\ell^\prime:y=-kx$とを漸近線とする双曲線$C$がある.$C$上に点$\mathrm{P}$をとるとき,以下の問いに答えよ.ただし,$k$は正の定数とする.

(1)双曲線$C$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,$\ell,\ \ell^\prime$に平行な直線をそれぞれ$m,\ m^\prime$とする.$4$つの直線$\ell,\ \ell^\prime,\ m,\ m^\prime$で囲まれた平行四辺形の面積を$S$とするとき,$S$は$C$上の点$\mathrm{P}$のとり方によらずに一定であることを示せ.
(3)$k=2$のとき,$\mathrm{PF} \cdot \mathrm{PF}^\prime=2 \mathrm{OP}^2$をみたす$C$上の点$\mathrm{P}$の座標を求めよ.ただし,$\mathrm{P}$は第$1$象限にあるものとする.
福井大学 国立 福井大学 2016年 第2問
原点を$\mathrm{O}$とする座標平面上に,$\mathrm{F}(5,\ 0)$を焦点の$1$つとし,直線$\ell:y=kx$と$\ell^\prime:y=-kx$とを漸近線にもつ双曲線$C$がある.ただし,$k>0$とする.$C$上の点$\mathrm{Q}(a,\ b)$を通り,$2$本の漸近線に平行な$2$直線のうち,傾きが正のものを$m$,傾きが負のものを$m^\prime$とする.$\ell$と$m^\prime$との交点を$\mathrm{P}$,$\ell^\prime$と$m$との交点を$\mathrm{R}$とし,四角形$\mathrm{OPQR}$の面積を$S$とおくとき,以下の問いに答えよ.

(1)双曲線$C$の方程式を$k$を用いて表せ.
(2)点$\mathrm{P}$,$\mathrm{R}$の座標を,$a,\ b,\ k$を用いて表せ.
(3)$S$は点$\mathrm{Q}$のとり方によらないことを証明せよ.
(4)$k$が$k>0$の範囲を動くとき,$S$の最大値とそのときの$k$の値を求めよ.
南山大学 私立 南山大学 2016年 第3問
$\mathrm{O}$を原点とする座標空間に$4$点$\mathrm{A}(2,\ 0,\ 4)$,$\mathrm{B}(0,\ 4,\ 0)$,$\mathrm{C}(3,\ 1,\ 0)$,$\mathrm{D}(-1,\ 0,\ 1)$がある.

(1)$\angle \mathrm{BCD}$を求めよ.
(2)$\triangle \mathrm{BCD}$の面積$S$を求めよ.
(3)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$を通る球面の半径と中心の座標を求めよ.
慶應義塾大学 私立 慶應義塾大学 2016年 第4問
$f(x)=x^3-3 |x|$とする.以下の問いに答えなさい.

(1)関数$y=f(x)$のグラフをかきなさい.
(2)$f(x)+a=0$を満たす実数$x$が$1$つであるような定数$a$の値の範囲を求めなさい.
(3)曲線$y=f(x)+b$上の点$(-2,\ f(-2)+b)$における接線が原点を通るような定数$b$の値を求めなさい.また,その接線の方程式を求めなさい.
早稲田大学 私立 早稲田大学 2016年 第4問
$xy$平面上の原点を中心とする単位円を底面とし,点$\mathrm{P}(t,\ 0,\ 1)$を頂点とする円錐を$\mathrm{K}$とする.$t$が$-1 \leqq t \leqq 1$の範囲を動くとき,円錐$\mathrm{K}$の表面および内部が通過する部分の体積は$\displaystyle \frac{\pi+[ナ]}{[ニ]}$である.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。