タグ「原点」の検索結果

56ページ目:全992問中551問~560問を表示)
福岡女子大学 公立 福岡女子大学 2013年 第2問
$m>0$,$n>0$とする.座標平面の$x$軸上に原点$\mathrm{O}$をはさんで左側に点$\mathrm{B}$,右側に点$\mathrm{C}$があり,線分$\mathrm{BC}$の長さを$c$とする.ただし,点$\mathrm{B}$と点$\mathrm{C}$は共に点$\mathrm{O}$と異なるものとする.以下の問に答えなさい.

(1)原点$\mathrm{O}$が線分$\mathrm{BC}$を$m:n$に内分するとき,$\mathrm{B}$,$\mathrm{C}$の$x$座標を$m,\ n,\ c$を用いて表しなさい.
(2)座標平面上の任意の点$\mathrm{A}(a,\ b)$は,次の関係式を満たすことを示しなさい.
\[ \frac{n}{m+n} \mathrm{AB}^2+\frac{m}{m+n} \mathrm{AC}^2=\mathrm{AO}^2+\frac{n}{m} \mathrm{BO}^2 \]
京都府立大学 公立 京都府立大学 2013年 第2問
$\mathrm{O}$を原点とする$xyz$空間内に$5$点$\mathrm{A}(-1,\ 0,\ 0)$,$\mathrm{B}(0,\ 2,\ 0)$,$\mathrm{C}(0,\ 0,\ 1)$,$\mathrm{D}(0,\ 0,\ 2)$,$\mathrm{E}(0,\ 0,\ 4)$をとる.中心が$\mathrm{D}$,半径が$2$の球面を$S$とし,$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面を$\alpha$とする.$S$が$\alpha$と交わってできる図形を$F$とする.$\mathrm{D}$から$\alpha$に垂線$\mathrm{DH}$を下ろす.以下の問いに答えよ.

(1)$\alpha$に垂直な単位ベクトルをすべて求めよ.
(2)$F$は$\mathrm{H}$を中心とする円であることを示せ.
(3)$F$の半径と中心の座標を求めよ.
(4)点$\mathrm{P}$は$F$上を動く点とし,直線$\mathrm{EP}$と$xy$平面との交点を$\mathrm{Q}(s,\ t,\ 0)$とする.このとき,$s,\ t$が満たす方程式を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第2問
逆行列をもつ行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$によって表される$1$次変換を考える.以下の問いに答えよ.

(1)この変換によって$xy$平面上の任意の$2$点$\mathrm{P}(x_1,\ y_1)$および$\mathrm{Q}(x_2,\ y_2)$がそれぞれ$\mathrm{P}^\prime ({x_1}^\prime,\ {y_1}^\prime)$および$\mathrm{Q}^\prime ({x_2}^\prime,\ {y_2}^\prime)$に移されるとき,$2$点間の距離が変換によって変化しない,つまり,$|\overrightarrow{\mathrm{PQ}}|^2=|\overrightarrow{\mathrm{P}^\prime \mathrm{Q}^\prime}|^2$であるための必要十分条件は,
\[ A^\mathrm{T}A=E \qquad \cdots\cdots (*) \]
であることを示せ.ただし,$A^\mathrm{T}$は$A$の行と列を入れ替えた行列要素をもつ行列,すなわち,
\[ A^\mathrm{T}=\left( \begin{array}{cc}
a & c \\
b & d
\end{array} \right) \]
である.また,$E$は単位行列である.
(2)原点のまわりの回転移動および$x$軸に関する対称移動の$1$次変換を,それぞれ,$f$および$g$とする.これらの$1$次変換を表す行列は,それぞれ,上の条件$(*)$を満たすことを確かめよ.
(3)$(2)$で考えた$1$次変換$f$および$g$を表す行列をそれぞれ$F$および$G$とし,$A=FGF^{-1}$で定義される行列$A$によって表される$1$次変換を考える.この変換によって直線$y=mx$上の任意の点がそれ自身に移されるとき,$A$を実数$m$を用いて表せ.ただし,$F^{-1}$は$F$の逆行列を表す.
(4)$(1)$で考えた点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$の座標を用いて,$S=x_1y_2-y_1x_2$および$S^{\prime}={x_1}^\prime {y_2}^\prime-{y_1}^\prime {x_2}^\prime$を定義する.$\mathrm{P}$,$\mathrm{Q}$から$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$への変換を表す行列が$(3)$で求めた$A$で与えられるとき,$S$と$S^\prime$の関係式を求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
原点を$\mathrm{O}$とする$xyz$空間内に$1$辺の長さが$1$の正四面体$\mathrm{OPQR}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通り$z$軸に平行な$3$直線と$xy$平面との交点をそれぞれ$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$,$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の面積をそれぞれ$S$,$S_1$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$3$点を通る平面と$xy$平面のなす角を$\theta$とするとき,$S_1=S |\cos \theta|$を示せ.
(2)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の周上を含む内部にあるとき,$z$軸と$\triangle \mathrm{PQR}$の交点を$\mathrm{A}$とする.このとき正四面体$\mathrm{OPQR}$の体積$V$は$\displaystyle V=\frac{1}{3} \mathrm{OA} \cdot S_1$となることを示し,$S_1$の最小値を求めよ.
(3)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の外部にあり,線分$\mathrm{OP}^\prime$と線分$\mathrm{Q}^\prime \mathrm{R}^\prime$が交点$\mathrm{B}$をもつとき,点$\mathrm{B}$を通り$z$軸に平行な直線と,直線$\mathrm{OP}$および直線$\mathrm{QR}$との交点をそれぞれ$\mathrm{C}$,$\mathrm{D}$とする.このとき四角形$\mathrm{OQ}^\prime \mathrm{P}^\prime \mathrm{R}^\prime$の面積を$S_2$とすると$\displaystyle V=\frac{1}{3} \mathrm{CD} \cdot S_2$となることを示し,$S_2$の最大値を求めよ.
三重県立看護大学 公立 三重県立看護大学 2013年 第3問
$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の座標が,それぞれ$(4,\ 0,\ 0)$,$(0,\ 3,\ 0)$,$(0,\ 0,\ 8)$のとき,次の問いに答えなさい.

(1)三角形$\mathrm{ABC}$および原点によって囲まれた三角すい$\mathrm{OABC}$を図示し,体積を計算しなさい.
(2)三角形$\mathrm{ABC}$の面積を計算しなさい.
釧路公立大学 公立 釧路公立大学 2013年 第3問
$k$を$0<k<1$の範囲の定数とする.直線$\ell:y=kx$と曲線$C:y=|x^2-2x|$について以下の各問に答えよ.

(1)直線$\ell$と曲線$C$の交点$\mathrm{P}_1(x_1,\ y_1)$,$\mathrm{P}_2(x_2,\ y_2)$を求めよ.ただし,$0<x_1<x_2$とする.
(2)原点を$\mathrm{O}$として,線分$\mathrm{OP}_1$と曲線$C$で囲まれる部分の面積を$S_1$,線分$\mathrm{P}_1 \mathrm{P}_2$と曲線$C$で囲まれる部分の面積を$S_2$とする.このとき,$S_1$と$S_2$をそれぞれ$k$の関数で表せ.
(3)$S=S_1+S_2$とする.このとき,$S$が最小となる$k$の値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第2問
$1$から$4$の数字が$1$つずつ書かれた正四面体のサイコロを独立に$4$回投げ,底面に書かれてある数字をサイコロを投げた順番に$a_1,\ a_2,\ a_3,\ a_4$とする.そして,座標平面上の$2$点を$\mathrm{P}_1(a_1,\ a_2)$,$\mathrm{P}_2(-a_3,\ a_4)$とする.また,原点を$\mathrm{O}$と表す.

(1)点$\mathrm{P}_1$が直線$y=2x$上にあり,かつ点$\mathrm{P}_2$が直線$\displaystyle y=-\frac{1}{2}x$上にある確率を求めよ.
(2)$\angle \mathrm{P}_1 \mathrm{OP}_2$が直角となる確率を求めよ.
(3)$\angle \mathrm{P}_1 \mathrm{OP}_2$が鋭角となる確率を求めよ.
島根県立大学 公立 島根県立大学 2013年 第2問
原点$\mathrm{O}$を起点に$\mathrm{XY}$座標軸上を次の法則に従って動く$2$つの点$\mathrm{A}$,$\mathrm{B}$がある.コインを投げて表が出れば点$\mathrm{A}$は$\mathrm{X}$軸上を$+1$だけ動き,点$\mathrm{B}$はその場にとどまる.一方,裏が出れば点$\mathrm{A}$はその場にとどまり,点$\mathrm{B}$は$\mathrm{Y}$軸上を$+1$だけ動く.次の問いに答えよ.

(1)$6$回コインを投げたとき,点$\mathrm{A}$が$(6,\ 0)$の位置に到達する確率を求めよ.
(2)$4$回コインを投げたとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{3}{2}$になる確率を求めよ.
(3)$6$回コインを投げたときの三角形$\mathrm{OAB}$の面積の期待値を求めよ.
横浜市立大学 公立 横浜市立大学 2013年 第3問
座標平面上において,原点を中心とする半径$1$の円に,放物線$\displaystyle C:y=-\frac{p}{2}x^2+q (p>0,\ q>0)$が異なる$2$点で接しているとする.以下の問いに答えよ.

(1)$p,\ q$の満たす関係式および$p,\ q$の取りうる範囲を求めよ.
(2)$x$軸と$C$で囲まれた図形(ただし,$y \geqq 0$)の面積$S$を$p$を用いて表せ.
(3)$(1)$の条件の下で$p$が動くとき,$S$の最小値を求めよ.
北九州市立大学 公立 北九州市立大学 2013年 第2問
曲線$C:y=|x(x-2)|$と直線$\ell:y=kx$($k$は定数)が原点$\mathrm{O}$以外に$2$点$\mathrm{A}$,$\mathrm{B}$で交わっている.ただし,点$\mathrm{B}$の$x$座標は点$\mathrm{A}$の$x$座標よりも大きいとする.また,点$\mathrm{B}$を通り,点$\mathrm{B}$とも原点$\mathrm{O}$とも異なる点$\mathrm{E}$において曲線$C$と接する直線を$m$とする.以下の問いに答えよ.

(1)定数$k$の値の範囲を求めよ.
(2)直線$m$と$y$軸との交点を$\mathrm{F}$とする.三角形$\mathrm{FOE}$は曲線$C$によって二つの図形に分割されている.それらの二つの図形の面積の比を求めよ.
(3)$k=1$のとき,点$\mathrm{E}$の座標を求めよ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。