タグ「原点」の検索結果

24ページ目:全992問中231問~240問を表示)
神戸薬科大学 私立 神戸薬科大学 2015年 第5問
一直線上にない$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$を通る平面$\alpha$があった.$\overrightarrow{\mathrm{AB}}=(1,\ 2,\ 0)$,$\overrightarrow{\mathrm{AC}}=(-1,\ 0,\ 2)$のとき,この$2$つのベクトルに垂直で大きさが$\sqrt{6}$であるベクトル$\overrightarrow{p}$をすべて求めると,$\overrightarrow{p}=[ソ]$である.平面$\alpha$が点$(0,\ 1,\ 2)$を通るとき,原点$\mathrm{O}$から平面$\alpha$におろした垂線$\mathrm{OH}$の長さを求めると,$\mathrm{OH}=[タ]$である.
名城大学 私立 名城大学 2015年 第1問
次の問について,答えを$[ ]$内に記入せよ.

(1)点$\mathrm{P}(x,\ y)$が原点$\mathrm{O}$を中心とする半径$\sqrt{2}$の円周上を動くとき,$\sqrt{3}x+y$の最小値は$[ア]$であり,$x^2+2xy+3y^2$の最大値は$[イ]$である.
(2)放物線$y=x^2$上に$3$点$\mathrm{A}(a,\ a^2)$,$\mathrm{B}(-4,\ 16)$,$\mathrm{C}(2,\ 4)$がある.$a>0$かつ$\mathrm{AB}=\mathrm{AC}$であるとき,$a=[ウ]$であり,$\triangle \mathrm{ABC}$の面積は$[エ]$である.
東京医科大学 私立 東京医科大学 2015年 第2問
次の$[ ]$を埋めよ.

(1)$\displaystyle \int_0^1 {\left( x \sqrt{1-x^2} \right)}^3 \, dx=\frac{[ア]}{[イウ]}$である.
(2)座標平面における曲線$\displaystyle C:y=\frac{4}{3}x+\frac{2}{3} \sqrt{x} (x>0)$上に点$\mathrm{P}$をとり,原点$\mathrm{O}$と点$\mathrm{P}$とを結ぶ線分$\mathrm{OP}$を考える.線分$\mathrm{OP}$と曲線$C$により囲まれた図形の面積を$A$とし,線分$\mathrm{OP}$を一辺とする正方形の面積を$S$とする.点$\mathrm{P}$が曲線$C$上を動くとき,面積比$\displaystyle \frac{A}{S}$のとり得る最大値を$M$とすれば$\displaystyle M=\frac{[エ]}{[オカ]}$である.
東邦大学 私立 東邦大学 2015年 第13問
$\mathrm{O}$を原点とする空間において,$3$点$\mathrm{P}(1,\ -2,\ 0)$,$\mathrm{Q}(0,\ -2,\ 2)$,$\mathrm{R}(2,\ 0,\ 2)$を通る平面を$\alpha$とする.また,平面$\alpha$上に,点$\mathrm{P}$を中心とし,線分$\mathrm{PR}$を半径とする円$C$がある.このとき,原点$\mathrm{O}$と平面$\alpha$との距離は$[サ]$であり,原点$\mathrm{O}$と円$C$の周上の点との距離の最大値は$[シ] \sqrt{[ス]}$である.
九州産業大学 私立 九州産業大学 2015年 第2問
円$x^2+y^2-6x+ay+4=0$上の点$\mathrm{A}(5,\ 1)$における接線を$\ell$とする.原点$\mathrm{O}$からこの円に引いた$2$本の接線のうち,傾きが正であるものの方程式を$y=mx$,接点を$\mathrm{B}$とする.また,この円の中心を$\mathrm{C}$とする.

(1)$a=[ア]$である.
(2)$\mathrm{C}$の座標は$([イ],\ [ウ])$である.
(3)接線$\ell$の傾きは$[エオ]$である.
(4)$\triangle \mathrm{OBC}$の面積は$\sqrt{[カ]}$である.
(5)$\displaystyle m=\frac{\sqrt{[キ]}}{[ク]}$である.
日本女子大学 私立 日本女子大学 2015年 第2問
座標平面の原点を$\mathrm{O}$とする.放物線$y=(x-3)^2$と直線$y=mx$は$2$点$\mathrm{A}(\alpha,\ m \alpha)$,$\mathrm{B}(\beta,\ m \beta)$で交わり,点$\mathrm{A}$は線分$\mathrm{OB}$を$1:2$に内分するものとする.ただし,$m<0$とする.

(1)定数$m,\ \alpha,\ \beta$の値を求めよ.
(2)連立不等式
\[ y \leqq (x-3)^2,\quad y \geqq mx,\quad y \geqq 0,\quad \alpha \leqq x \leqq 3 \]
が表す領域の面積を求めよ.
京都女子大学 私立 京都女子大学 2015年 第2問
放物線$y=x^2-2ax+b$($a,\ b$は定数)と直線$y=2x+3$が$2$つの交点$\mathrm{P}$,$\mathrm{Q}$をもち,点$\mathrm{P}$がこの放物線の頂点であるとき,次の問に答えよ.

(1)点$\mathrm{P}$の座標を$a$で表せ.
(2)点$\mathrm{Q}$の座標を$a$で表せ.
(3)原点を$\mathrm{O}$とする.$b$が最小値をとるときの$\triangle \mathrm{QPO}$の面積を求めよ.
西南学院大学 私立 西南学院大学 2015年 第3問
以下の問に答えよ.

(1)直線$\displaystyle y=\frac{1}{2}x$を原点のまわりに正の向きに$\displaystyle \frac{\pi}{4}$だけ回転した直線の方程式は$y=[チ]x$である.
(2)$2$点$\mathrm{A}(-1,\ 5)$,$\mathrm{B}(3,\ 2)$に対して,直線$y=mx-2m-1$が線分$\mathrm{AB}$(両端を含む)と共有点をもつような定数$m$の範囲は,$m \leqq [ツテ]$,$m \geqq [ト]$である.
(3)$2$点$\mathrm{C}(2,\ 1)$,$\mathrm{D}(5,\ 4)$に対して,$\mathrm{CP}:\mathrm{DP}=1:2$となるような点$\mathrm{P}(x,\ y)$の軌跡の方程式は,$\displaystyle \left( x-[ナ] \right)^2+\left( y-[ニ] \right)^2=[ヌ]$である.
西南学院大学 私立 西南学院大学 2015年 第4問
$\mathrm{O}$を原点とし,$2$点$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$に関して,$|\overrightarrow{a}|=2$,$|\overrightarrow{b}|=3$,$|\overrightarrow{a}+\overrightarrow{b}|=4$であるとき,以下の問に答えよ.

(1)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[マ]}{[ミ]}$である.
(2)三角形$\mathrm{OAB}$の外心を$\mathrm{H}$とすると,$\displaystyle \overrightarrow{\mathrm{OH}}=\frac{[ム]}{[メ]} \overrightarrow{a}+\frac{[モ]}{[ヤ]} \overrightarrow{b}$である.
西南学院大学 私立 西南学院大学 2015年 第6問
原点を$\mathrm{O}$とし,三角形$\mathrm{OAB}$がある.$\mathrm{A}(\overrightarrow{a})$,$\mathrm{B}(\overrightarrow{b})$を通る直線を$\ell$とするとき,以下の問に答えよ.

(1)$\ell$上の任意の点を$\mathrm{P}(\overrightarrow{p})$とすると,直線$\ell$のベクトル方程式は実数$t$に対して,
\[ \overrightarrow{p}=(1-t) \overrightarrow{a}+t \overrightarrow{b} \cdots\cdots① \]
となることを証明せよ.
(2)$\overrightarrow{a},\ \overrightarrow{b}$のなす角を$2$等分する直線$m$上の任意の点を$\mathrm{Q}(\overrightarrow{q})$とすると,直線$m$のベクトル方程式は,実数$k$に対して,
\[ \overrightarrow{q}=k \left( \frac{\overrightarrow{a}}{|\overrightarrow{a}|} +\frac{\overrightarrow{b}}{|\overrightarrow{b}|} \right) \]
となることを証明せよ.
また,$\mathrm{P}(\overrightarrow{p})$が直線$\ell$と直線$m$の交点であるとき,式$①$の$t$を$|\overrightarrow{a}|$と$|\overrightarrow{b}|$で表せ.
スポンサーリンク

「原点」とは・・・

 まだこのタグの説明は執筆されていません。