タグ「半径」の検索結果

7ページ目:全712問中61問~70問を表示)
慶應義塾大学 私立 慶應義塾大学 2016年 第5問
次の問いに答えよ.

(1)図のように大中小の円と直線が互いに接している.小円の半径は$4$寸,中円の半径は$9$寸であった.このとき,大円の半径は$[$55$][$56$]$寸である.(注意:図は原寸どおりではない.)
(図は省略)
(2)\begin{mawarikomi}{50mm}{
(図は省略)
}
図のように半径$4$寸の扇形$\mathrm{AOB}$と半径$1$寸の扇形$\mathrm{COD}$が重なっている.今$\displaystyle \cos \angle \mathrm{AOB}=\frac{5}{8}$とすると,弧$\koa{$\mathrm{AB}$}$と直線$\mathrm{AD}$,$\mathrm{BC}$に接する円の半径は
\[ \frac{[$57$][$58$]}{[$59$][$60$]} \left( [$61$][$62$]-\sqrt{[$63$][$64$]} \right) \]
寸である.(注意:図は原寸どおりではない.)
\end{mawarikomi}
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
明治大学 私立 明治大学 2016年 第2問
同一平面上において,点$\mathrm{O}$を中心とする半径$10$の円周上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.線分$\mathrm{AB}$と直線$\mathrm{CO}$は交点を持ち,この交点を$\mathrm{P}$とする.$\mathrm{CP}=14$であり,$\mathrm{AP}:\mathrm{BP}=2:3$である.以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とすると,$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{[チ] \overrightarrow{a}+[ツ] \overrightarrow{b}}{[テ]}$である.
また,$\displaystyle \overrightarrow{\mathrm{OA}}=\frac{[ト] \overrightarrow{a}-[ナ] \overrightarrow{b}}{[ニ]}$と表すことができる.
(2)$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$についての計算から,内積$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[ヌ][ネ][ノ]}{[ハ]}$となる.

さらに,$\mathrm{CA}=[ヒ] \sqrt{[フ][ヘ]}$,$\mathrm{CB}=[ホ] \sqrt{[マ]}$である.

(3)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[ミ][ム][メ] \sqrt{[モ]}}{[ヤ]}$である.
明治大学 私立 明治大学 2016年 第1問
$(1)$~$(5)$において,$\nagamaruA$,$\nagamaruB$,$\nagamaruC$の値の大小関係を調べ,最大のものと最小のものを答えよ.

(1)$\{1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 6,\ 6,\ 7\}$の,
$\nagamaruA$ 平均値 \qquad $\nagamaruB$ 中央値(メジアン) \quad $\nagamaruC$ 最頻値(モード)
(2)$\theta$が第$2$象限の角で,$\displaystyle \sin \theta=\frac{2}{3}$のとき,
$\displaystyle \nagamaruA \sin \left( \theta-\frac{\pi}{2} \right)$ \qquad $\nagamaruB \cos \theta$ \qquad $\nagamaruC \tan \theta$
(3)$\nagamaruA$ 半径$4$,面積$4 \pi$の扇形の弧の長さ
$\nagamaruB$ 半径$5$,中心角$\displaystyle \frac{\pi}{2}$の扇形の弧の長さ
$\nagamaruC$ 半径$6$,中心角${72}^\circ$の扇形の弧の長さ
(4)$2x^3+x^2-8x-3$を$x+2$で割ったときの商を$f(x)$としたとき,
$\nagamaruA f(0)$ \qquad $\nagamaruB f(1)$ \qquad $\nagamaruC f(2)$
(5)$f(x)=x^3-x^2-5x+5$のとき,
$\displaystyle \nagamaruA f \left( -\frac{2236}{1001} \right)$ \qquad $\displaystyle \nagamaruB f \left( \frac{98}{299} \right)$ \qquad $\displaystyle \nagamaruC f\left( \frac{502}{301} \right)$
東邦大学 私立 東邦大学 2016年 第2問
空間において,方程式$x^2+y^2+z^2-2x-8y-4z-28=0$で表される曲面を$C$とする.このとき,$C$は中心$([ウ],\ [エ],\ [オ])$,半径$[カ]$の球面である.また,$C$上の点$(-5,\ 6,\ 5)$で接する平面と$z$軸との交点の座標は$(0,\ 0,\ [キク])$である.
東京女子大学 私立 東京女子大学 2016年 第3問
座標空間において$\mathrm{N}(0,\ 0,\ 1)$,$\mathrm{P}(a,\ b,\ 0)$とする.原点を中心とする半径$1$の球面と直線$\mathrm{NP}$との$\mathrm{N}$以外の交点を$\mathrm{Q}(x,\ y,\ z)$とする.このとき,以下の設問に答えよ.

(1)$\overrightarrow{\mathrm{NQ}}=t \overrightarrow{\mathrm{NP}}$をみたす実数$t$を$a,\ b$で表せ.
(2)$x,\ y,\ z$を,それぞれ$a,\ b$で表せ.
(3)$a,\ b$を,それぞれ$x,\ y,\ z$で表せ.
昭和薬科大学 私立 昭和薬科大学 2016年 第2問
$3$点$\mathrm{A}(6,\ 0,\ 0)$,$\mathrm{B}(2,\ 1,\ 1)$,$\mathrm{C}(0,\ 4,\ -1)$を通る平面$\alpha$に対して,以下の問に答えよ.

(1)平面$\alpha$の方程式を$ax+by+cz=6$としたとき,$a=[ナ]$,$b=[ニ]$,$c=[ヌ]$である.
(2)原点$\mathrm{O}$から平面$\alpha$に下ろした垂線の足を$\mathrm{H}$とするとき,$\mathrm{H}$の座標は
\[ \left( \frac{[ネ]}{[ノ]},\ \frac{[ハ]}{[ヒ]},\ \frac{[フ]}{[ヘ]} \right) \]
である.
(3)平面$\alpha$上に点$\mathrm{A}$を中心とした半径$\sqrt{2}$の円$\beta$を考える.点$\mathrm{P}$が円$\beta$上を動くとき,$\mathrm{OP}$の最小値は$\sqrt{[ホマ]}$である.
神奈川大学 私立 神奈川大学 2016年 第1問
次の空欄を適当に補え.

(1)方程式$x^2+y=63$を満たす自然数の組$(x,\ y)$は$[ ]$組ある.
(2)ベクトル$\overrightarrow{a}=(1,\ 2)$,$\overrightarrow{b}=(-2,\ 3)$,$\overrightarrow{c}=(2,\ -1)$がある.$\overrightarrow{a}+t \overrightarrow{b}$が$\overrightarrow{c}$と平行となるのは$t=[ ]$のときである.
(3)$0 \leqq x<2\pi$とする.不等式$\sqrt{3} \sin x+\cos x>\sqrt{3}$を解くと,$x$の値の範囲は$[ ]$である.
(4)$S=1+2r^2+3r^4+4r^6+\cdots +10r^{18}$とする.$r=\sqrt{2}$のとき,$S$の値を求めると$[ ]$である.
(5)赤,青,黄のカードが$2$枚ずつある.この$6$枚のカードを$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$人に$2$枚ずつ配るとき,どの人の$2$枚についてもその色が異なる確率は$[ ]$である.
(6)複素数平面で,方程式
\[ z \overline{z}-iz+i \overline{z}-9=0 \]
で定まる円の中心を表す複素数は$[ ]$であり,半径は$[ ]$である.ただし,$i$は虚数単位である.
神奈川大学 私立 神奈川大学 2016年 第2問
円$C:x^2+y^2-4y+3=0$と直線$\ell:2ax-y-2a=0$について,以下の問いに答えよ.ただし,$a$は定数とする.

(1)$C$の中心の座標と半径を求めよ.
(2)$C$と$\ell$が異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わるときの,$a$の値の範囲を求めよ.
(3)$a$が$(2)$で求めた値の範囲を動くとき,線分$\mathrm{PQ}$の長さが$\sqrt{2}$となる$a$の値を求めよ.
岡山理科大学 私立 岡山理科大学 2016年 第4問
$\triangle \mathrm{ABC}$において,内心を$\mathrm{I}$,外心を$\mathrm{O}$,内接円の半径を$r$,外接円の半径を$R$とするとき,次の問いに答えよ.

(1)$\angle \mathrm{BAC}=\alpha$とするとき,$\angle \mathrm{BIC}$を$\alpha$の式で表せ.
(2)直線$\mathrm{AI}$と$\triangle \mathrm{ABC}$の外接円との$\mathrm{A}$でない交点を$\mathrm{D}$とするとき,$3$点$\mathrm{B}$,$\mathrm{C}$,$\mathrm{I}$は$\mathrm{D}$を中心とする同一円周上にあることを証明せよ.
(3)$2$点$\mathrm{I}$,$\mathrm{O}$の距離を$d$とする.$\mathrm{AB}=\mathrm{AC}$のとき,等式$(R+d)(R-d)=2rR$および不等式$R \geqq 2r$を証明せよ.
(4)$\mathrm{AB} \neq \mathrm{AC}$のとき,不等式$R>2r$を証明せよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。