タグ「半径」の検索結果

20ページ目:全712問中191問~200問を表示)
北九州市立大学 公立 北九州市立大学 2015年 第3問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$1$の円$C$と点$\mathrm{A}(-1,\ 0)$を考える.また,円$C$上で点$\mathrm{A}$と異なる点を$\mathrm{P}(\cos 2\theta,\ \sin 2\theta)$とおく.ただし,$\theta$は$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$を満たす.線分$\mathrm{AP}$の中点を$\mathrm{M}$とし,線分$\mathrm{AP}$の垂直$2$等分線と円$C$の交点を各々$\mathrm{Q}$,$\mathrm{R}$とする.ただし,$2$点$\mathrm{Q}$,$\mathrm{R}$は,円$C$上に反時計回りに$\mathrm{ARPQ}$の順に並ぶようにとる.以下の問題に答えよ.

(1)中点$\mathrm{M}$の座標を$\theta$を用いて表せ.
(2)$2$点$\mathrm{Q},\ \mathrm{R}$の座標を$\theta$を用いて表せ.
(3)線分$\mathrm{QR}$の長さを求めよ.また,線分$\mathrm{AP}$の長さを$\theta$を用いて表せ.
(4)四角形$\mathrm{ARPQ}$の面積を$S$とおく.面積$S$を$\theta$を用いて表せ.また,面積$S$が最大となるとき,$\theta$の値と面積$S$を求めよ.
(5)$\triangle \mathrm{APQ}$と$\triangle \mathrm{ARP}$の面積を$\theta$を用いて表せ.
北九州市立大学 公立 北九州市立大学 2015年 第1問
以下の問いの空欄$[ア]$~$[ケ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$x$および$y$は実数とする.点$(x,\ y)$が$x^2+2y^2=2$を満たすとき,$\displaystyle \frac{1}{2}x+y^2$の最大値は$[ア]$,最小値は$[イ]$となる.
(2)半径$r$の円に内接する正$12$角形を考える.この正$12$角形の$1$辺の長さを$1$とすると,円の半径$r$の値は$[ウ]$,正$12$角形の面積は$[エ]$である.
(3)大きさの異なる$3$種類の無地のタイルがある.タイルは長方形で,縦と横の長さがそれぞれ$2 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$3 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$5 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$である.$15 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$の長方形の壁にタイルを隙間なく,はみ出ないように貼り付けるとき,$[オ]$通りの貼り付け方が存在する.必ずしも$3$種類すべてのタイルを使わなくてもよいものとする.また,タイルは切断できないものとする.
(4)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{2}{\sqrt{5}-1}$のとき,$x^3+x^2y+xy^2+y^3$の値は$[カ]$,$x^6+y^6$の値は$[キ]$となる.
(5)赤玉が$3$個,白玉が$5$個入っている袋から同時に$4$個の玉を取り出す.このとき,取り出された玉がすべて白玉となる確率は$[ク]$である.少なくとも$2$個の赤玉が取り出される確率は$[ケ]$である.
北九州市立大学 公立 北九州市立大学 2015年 第3問
半径$1$の円を底面とする高さ$2$の円柱がある.下図のように,ひとつの底面を$xy$平面にとり,その中心を原点$\mathrm{O}$にとる.点$\displaystyle \mathrm{A} \left( -\frac{1}{\sqrt{2}},\ 0,\ 0 \right)$および点$\displaystyle \mathrm{B} \left( 0,\ 0,\ \frac{1}{\sqrt{2}} \right)$を通り,$xy$平面と${45}^\circ$の角をなす平面で,円柱を$2$つの立体に分ける.以下の問いに答えよ.

(1)平面$x=a$(ただし,$\displaystyle -\frac{1}{\sqrt{2}} \leqq a \leqq 1$)で小さい方の立体を切ったときの切り口(長方形$\mathrm{PQRS}$)の面積$S(a)$を求めよ.
(2)小さい方の立体の体積$V$を求めよ.
(図は省略)
北九州市立大学 公立 北九州市立大学 2015年 第4問
原点を$\mathrm{O}$として$3$点$\mathrm{A}(0,\ 1,\ 4)$,$\mathrm{B}(1,\ -1,\ 0)$,$\mathrm{C}(-1,\ 3,\ 2)$をとる.以下の問いに答えよ.

(1)点$\mathrm{A}$から直線$\mathrm{BC}$に引いた垂線と直線$\mathrm{BC}$との交点を$\mathrm{P}$とする.点$\mathrm{P}$の座標を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)線分$\mathrm{AP}$の中点を$\mathrm{Q}$とする.点$\mathrm{Q}$を中心とする半径$\mathrm{AQ}$の球面$\mathrm{S}$を考える.原点$\mathrm{O}$は球面$\mathrm{S}$の内側にあるか外側にあるかを答えよ.
(4)球面$\mathrm{S}$と線分$\mathrm{AB}$との交点のうち,点$\mathrm{A}$と異なる交点を$\mathrm{H}$とする.点$\mathrm{H}$の座標を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第5問
座標平面上において,原点$\mathrm{O}$を中心とする半径$1$の円$C_0$に,半径$1$の円$C_1$が外接しながらすべることなく回転する.点$\mathrm{A}$を動く円$C_1$の中心とし,点$\mathrm{P}$を円$C_1$の円周上の定点とする.最初,点$\mathrm{A}$は座標$(2,\ 0)$の位置にあり,点$\mathrm{P}$は座標$(1,\ 0)$の位置にある.円$C_1$が円$C_0$の周りを反時計まわりに一周し,点$\mathrm{A}$が座標$(2,\ 0)$に戻ってくるとき,点$\mathrm{P}$のえがく曲線を$C$とする.動径$\mathrm{OA}$が$x$軸の正の部分から角$\theta (0 \leqq \theta \leqq 2\pi)$だけ回転した位置にあるとき,点$\mathrm{P}$の座標を$(x(\theta),\ y(\theta))$とする.このとき,次の問いに答えよ.

(1)点$\mathrm{P}$の座標$(x(\theta),\ y(\theta))$について,
\[ x(\theta)=2 \cos \theta-\cos 2\theta,\quad y(\theta)=2 \sin \theta-\sin 2\theta \]
が成り立つことを示せ.
(2)導関数$\displaystyle \frac{d}{d\theta} x(\theta)$を求め,$x(\theta)$の$\theta$に関する増減表を作成せよ.ただし,凹凸については言及しなくてよい.
(3)曲線$C$で囲まれる図形の面積$S$を求めよ.
横浜国立大学 国立 横浜国立大学 2014年 第4問
平面上に半径$1$と半径$2$の同心円$C_1$と$C_2$がある.自然数$n$に対して,$C_2$の周を$3n$等分する$3n$個の点がある.この$3n$個の点の中から異なる$3$点を選ぶとき,次の$(*)$をみたす選び方の総数を$a_k (k=0,\ 1,\ 2,\ 3)$とする.

$(*)$ 選んだ$3$点を頂点とする三角形の辺のうち,ちょうど$k$個が$C_1$の周と共有点をもつ.

次の問いに答えよ.

(1)$n=2$のとき,$a_0,\ a_1,\ a_2,\ a_3$を求めよ.
(2)$n \geqq 2$のとき,$a_0,\ a_1,\ a_2,\ a_3$を$n$の式で表せ.
一橋大学 国立 一橋大学 2014年 第4問
半径$1$の球が直円錐に内接している.この直円錐の底面の半径を$r$とし,表面積を$S$とする.

(1)$S$を$r$を用いて表せ.
(2)$S$の最小値を求めよ.
埼玉大学 国立 埼玉大学 2014年 第1問
正の整数$n$に対して,半径$1$の円に内接する正$4n$角形の面積を$S_n$とし,外接する正$4n$角形の面積を$T_n$とする.このとき,$S_n>0.95T_n$となる最小の数$n$を求めよ.
名古屋大学 国立 名古屋大学 2014年 第1問
空間内にある半径$1$の球(内部を含む)を$B$とする.直線$\ell$と$B$が交わっており,その交わりは長さ$\sqrt{3}$の線分である.

(1)$B$の中心と$\ell$との距離を求めよ.
(2)$\ell$のまわりに$B$を$1$回転してできる立体の体積を求めよ.
名古屋大学 国立 名古屋大学 2014年 第1問
原点を中心とする半径$1$の円を$C$とし,$x$軸上に点$\mathrm{P}(a,\ 0)$をとる.ただし$a>1$とする.$\mathrm{P}$から$C$へ引いた$2$本の接線の接点を結ぶ直線が$x$軸と交わる点を$\mathrm{Q}$とする.

(1)$\mathrm{Q}$の$x$座標を求めよ.
(2)点$\mathrm{R}$が$C$上にあるとき,$\displaystyle \frac{\mathrm{PR}}{\mathrm{QR}}$が$\mathrm{R}$によらず一定であることを示し,その値を$a$を用いて表せ.
(3)$C$上の点$\mathrm{R}$が$\angle \mathrm{PRQ}=90^\circ$をみたすとする.このような$\mathrm{R}$の座標と線分$\mathrm{PR}$の長さを求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。