タグ「半径」の検索結果

12ページ目:全712問中111問~120問を表示)
鳴門教育大学 国立 鳴門教育大学 2015年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\angle \mathrm{A}={60}^\circ$とします.辺$\mathrm{AB}$上に点$\mathrm{D}$,辺$\mathrm{AC}$上に点$\mathrm{E}$を$\mathrm{AD}=\mathrm{CE}$となるようにとります.ただし,点$\mathrm{D}$,$\mathrm{E}$は頂点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$とは異なるものとします.次の問いに答えなさい.

(1)$\mathrm{BC}$の長さを求めなさい.
(2)$\triangle \mathrm{ABC}$の外接円の半径$R$を求めなさい.
(3)$\mathrm{DE}$の長さが$2 \sqrt{2}$となるとき,$\mathrm{AD}$の長さを求めなさい.
(4)四角形$\mathrm{DBCE}$の面積が最小となる$\mathrm{AD}$の長さを求めなさい.また,そのときの四角形$\mathrm{DBCE}$の面積を求めなさい.
滋賀大学 国立 滋賀大学 2015年 第4問
座標平面において,点$\mathrm{O}(0,\ 0)$を中心とする半径$1$の円に内接する正六角形のうち,点$\mathrm{A}_1(1,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_1$から反時計回りに,$\mathrm{B}_1$,$\mathrm{C}_1$,$\mathrm{D}_1$,$\mathrm{E}_1$,$\mathrm{F}_1$とする.同様に,$2$以上の自然数$n$に対して,$\mathrm{O}$を中心とする半径$n$の円に内接する正六角形のうち,点$\mathrm{A}_n(n,\ 0)$を$1$つの頂点とするものを考え,その頂点を$\mathrm{A}_n$から反時計回りに,$\mathrm{B}_n$,$\mathrm{C}_n$,$\mathrm{D}_n$,$\mathrm{E}_n$,$\mathrm{F}_n$とする.$\overrightarrow{\mathrm{OA}_1}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}_1}=\overrightarrow{b}$とするとき,次の問いに答えよ.
(図は省略)

(1)$\overrightarrow{\mathrm{OC}_1}$,$\overrightarrow{\mathrm{B}_3 \mathrm{C}_7}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$s,\ t$を実数として,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{a}+t \overrightarrow{b}$と表される点$\mathrm{P}$が,正六角形$\mathrm{A}_n \mathrm{B}_n \mathrm{C}_n \mathrm{D}_n \mathrm{E}_n \mathrm{F}_n$の辺$\mathrm{A}_n \mathrm{F}_n$上にあるための必要十分条件を$s,\ t,\ n$を用いて表せ.ただし,$n$は自然数とし,頂点$\mathrm{A}_n$,$\mathrm{F}_n$は辺$\mathrm{A}_n \mathrm{F}_n$上の点とする.
(3)点$\mathrm{B}_3$,$\mathrm{C}_7$,$\mathrm{E}_2$と辺$\mathrm{A}_n \mathrm{F}_n$上の点$\mathrm{P}$がある平行四辺形の頂点となるような自然数$n$を求め,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
信州大学 国立 信州大学 2015年 第1問
原点を中心とする半径$1$の円$\mathrm{O}$の上に,$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( -\frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$をとる.線分$\mathrm{AC}$の中点を$\mathrm{M}$,線分$\mathrm{BC}$の中点を$\mathrm{N}$とする.$2$点$\mathrm{M}$,$\mathrm{N}$を通る直線が円$\mathrm{O}$と交わる$2$点のうち,$\mathrm{N}$に近い方の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{NQ}$の長さを求めよ.
信州大学 国立 信州大学 2015年 第5問
円$x^2+(y-1)^2=1$を$C$,円$(x-2)^2+(y-1)^2=1$を$C_0$とする.$C$,$C_0$,$x$軸に接する円を$C_1$とする.$C$,$C_1$,$x$軸に接し$C_0$と異なる円を$C_2$とし,これを繰り返して$C$,$C_n$,$x$軸に接し$C_{n-1}$と異なる円を$C_{n+1}$とする.また,円$C_n$の半径を$a_n$とする.このとき,次の問いに答えよ.

(1)$a_1$を求めよ.
(2)$\displaystyle b_n=\frac{1}{\sqrt{a_n}}$とするとき,数列$\{b_n\}$の満たす漸化式を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
信州大学 国立 信州大学 2015年 第4問
円$x^2+(y-1)^2=1$を$C$,円$(x-2)^2+(y-1)^2=1$を$C_0$とする.$C$,$C_0$,$x$軸に接する円を$C_1$とする.$C$,$C_1$,$x$軸に接し$C_0$と異なる円を$C_2$とし,これを繰り返して$C$,$C_n$,$x$軸に接し$C_{n-1}$と異なる円を$C_{n+1}$とする.また,円$C_n$の半径を$a_n$とする.このとき,次の問いに答えよ.

(1)$a_1$を求めよ.
(2)$\displaystyle b_n=\frac{1}{\sqrt{a_n}}$とするとき,数列$\{b_n\}$の満たす漸化式を求めよ.
(3)数列$\{a_n\}$の一般項を求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第6問
$xy$平面において,点$\displaystyle \left( 0,\ \frac{1}{2} \right)$を中心とする半径$\displaystyle \frac{1}{2}$の円を$C$とする.円$C$上に原点$\mathrm{O}$とは異なる点$\mathrm{P}$を取り,直線$\mathrm{OP}$と直線$y=1$の交点を$\mathrm{Q}$とする.また,$x$座標が$\mathrm{Q}$と同じで,$y$座標が$\mathrm{P}$と同じである点を$\mathrm{R}$とする.

(1)点$\mathrm{P}$が円$C$上の原点$\mathrm{O}$とは異なる点全体を動くとき,点$\mathrm{R}$の軌跡の方程式を求めよ.
(2)$(1)$で求めた曲線と$x$軸および$2$直線$x=0$,$x=1$で囲まれた図形の面積を求めよ.
愛知教育大学 国立 愛知教育大学 2015年 第9問
$a,\ b$を実数とし,$b<a$とする.焦点が$(0,\ a)$,準線が$y=b$である放物線を$P$で表すことにする.すなわち,$P$は点$(0,\ a)$からの距離と直線$y=b$からの距離が等しい点の軌跡である.

(1)放物線$P$の方程式を求めよ.
(2)焦点$(0,\ a)$を中心とする半径$a-b$の円を$C$とする.このとき,円$C$と放物線$P$の交点を求めよ.
(3)円$C$と放物線$P$で囲まれた図形のうち,放物線$P$の上側にある部分の面積を求めよ.
岩手大学 国立 岩手大学 2015年 第1問
次の問いに答えよ.

(1)$2$次方程式$3x^2+7x+5=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}$の値を求めよ.
(2)方程式$\displaystyle \log_9 (x+4)=\log_3 (2x-7)+\log_5 \frac{1}{5 \sqrt{5}}$を解け.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$の大きさをそれぞれ$A,\ B$で表すとき,$\displaystyle \cos A=\frac{3}{5}$,$\displaystyle \cos B=\frac{2}{3}$であるとし,さらに辺$\mathrm{AB}$の長さは$\displaystyle \frac{38}{5}$であるとする.このとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
岩手大学 国立 岩手大学 2015年 第1問
次の問いに答えよ.

(1)$2$次方程式$3x^2+7x+5=0$の$2$つの解を$\alpha,\ \beta$とするとき,$\displaystyle \frac{\alpha^2}{\beta}+\frac{\beta^2}{\alpha}$の値を求めよ.
(2)方程式$\displaystyle \log_9 (x+4)=\log_3 (2x-7)+\log_5 \frac{1}{5 \sqrt{5}}$を解け.
(3)$\triangle \mathrm{ABC}$において,$\angle \mathrm{A}$,$\angle \mathrm{B}$の大きさをそれぞれ$A,\ B$で表すとき,$\displaystyle \cos A=\frac{3}{5}$,$\displaystyle \cos B=\frac{2}{3}$であるとし,さらに辺$\mathrm{AB}$の長さは$\displaystyle \frac{38}{5}$であるとする.このとき,$\triangle \mathrm{ABC}$の外接円の半径を求めよ.
奈良女子大学 国立 奈良女子大学 2015年 第5問
原点を中心とする半径$1$の円$C$と,点$\mathrm{A}(2,\ 0)$を中心とする半径$1$の円$C_1$がある.円$C$上の点$\mathrm{P}(\cos \theta,\ \sin \theta)$をとり,$\mathrm{P}$を中心とする半径$1$の円を$C_2$とする.次の問いに答えよ.

(1)円$C_1$と円$C_2$が異なる$2$点で交わるとき,$\cos \theta$のとり得る値の範囲を求めよ.
(2)円$C_1$と円$C_2$が異なる$2$点で交わるとき,その$2$点と点$\mathrm{P}$を頂点とする三角形の面積を$S$とする.以下の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) $S$を$\theta$を用いて表せ.
(ii) $S$の最大値を求めよ.
スポンサーリンク

「半径」とは・・・

 まだこのタグの説明は執筆されていません。