タグ「割合」の検索結果

1ページ目:全17問中1問~10問を表示)
山口大学 国立 山口大学 2016年 第2問
$1$から$6$までの目が同じ割合で出る$4$個のさいころを同時に投げるとき,次の確率を求めなさい.

(1)出る目がすべて異なる確率
(2)出る目の最小値が$2$,かつ最大値が$3$である確率
(3)出る目の最大値と最小値の積が$20$以上である確率
山口東京理科大学 私立 山口東京理科大学 2016年 第2問
ある製品を工場$\mathrm{A}$および工場$\mathrm{B}$で製造している.工場$\mathrm{A}$の製品には$4 \, \%$,工場$\mathrm{B}$の製品には$5 \, \%$の不良品がそれぞれ含まれる.工場$\mathrm{A}$と工場$\mathrm{B}$の個数を$5:7$の割合で混ぜた大量の製品の中から$1$個の製品を取り出す.

(1)取り出した製品が不良品である確率は,$\displaystyle \frac{[ク][ケ]}{[コ][サ][シ]}$である.
(2)取り出した製品が不良品であったとき,それが工場$\mathrm{A}$の製品である確率は,$\displaystyle \frac{[ス]}{[セ][ソ]}$である.
津田塾大学 私立 津田塾大学 2016年 第4問
\begin{mawarikomi}{68mm}{
(図は省略)
}
座標平面の$x$軸上に直線$\ell$がある.点$\mathrm{O}^\prime$を中心とする半径$1$の円$C$が直線$\ell$に接しながら$x$軸の負の方向から正の方向へ,すべらずに転がっている.円$C$は$\mathrm{O}^\prime$のまわりに毎秒$1$ラジアンの割合で回転しているとする.

ある時刻に点$\mathrm{O}^\prime$が点$(0,\ 1)$に達し,同時に直線$\ell$が座標平面の原点$\mathrm{O}$を中心として毎秒$1$ラジアンの割合で正の向きに回転を始めた.その時刻に原点にある円$C$上の点を$\mathrm{P}$とする.円$C$はその後も$\ell$に接しながら同じように転がり続けるとする.

\end{mawarikomi}

(1)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における円$C$と直線$\ell$の接点$\mathrm{Q}$の座標を求めよ.
(2)$\ell$が動き始めてから$t$秒後$\displaystyle \left( 0 \leqq t \leqq \frac{\pi}{2} \right)$における点$\mathrm{P}$の座標を求めよ.
(3)$\ell$が動き始めてから$\displaystyle \frac{\pi}{2}$秒後までに点$\mathrm{P}$が描く曲線の長さを求めよ.
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
京都府立大学 公立 京都府立大学 2016年 第1問
以下の問いに答えよ.

(1)$xy$平面上に$2$点$\mathrm{A}(-1,\ 10)$,$\mathrm{B}(7,\ 2)$があり,点$\mathrm{P}$が$x$軸上を動くものとする.$\mathrm{AP}+\mathrm{BP}$が最小となるとき,$\mathrm{P}$の$x$座標を求めよ.
(2)$n$を$18$以下の自然数とする.くじが$18$本あり,そのうち$2$本が当たりくじである.この$18$本の中から$n$本を同時に引くとき,当たりくじを$1$本以上含む確率が$\displaystyle \frac{1}{2}$より大きくなる$n$の最小値を求めよ.
(3)$1$分間に$8 \, \%$の割合で個数が増えるバクテリアがある.このバクテリア$10$個が初めて$1000$個以上になるのは何分後か.ただし$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とし,答えは整数で求めよ.
久留米大学 私立 久留米大学 2015年 第5問
ある疾病に罹患しているか否かを検査する試薬がある.無作為に選ばれた被験者にこの試薬を試したところ,陽性と判定された被験者の$25 \, \%$が間違いであった(疾病に罹患していなかった).この試薬は$10 \, \%$の割合で誤った判定をすることが判っているとする.

(1)この疾病に罹患しているのは,被験者全体の$[$13$] \, \%$である.
(2)陰性と判定されたが実際には疾病に罹患していたのは,陰性と判定された被験者の$[$14$] \, \%$である.
広島修道大学 私立 広島修道大学 2013年 第2問
次の問いに答えよ.

(1)$2012$年の$1$年間にある県を訪れた観光客の数は,前年$1$年間に比べて$8 \; \%$増加したという.今後も同じ割合で観光客の数が増えていくとした場合,初めて観光客の数が$2012$年の$2$倍以上になるのは何年後か.答えを整数で求めよ.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(2)下の図のような道がある.地点$\mathrm{A}$を出発して,さいころを投げて$5$以上の目が出れば上に$1$区画進み,$4$以下の目が出れば右に$1$区画進むことにする.ただし,進む道がないときは動かない.さいころを$7$回投げるとき,次の確率を求めよ.

(i) 地点$\mathrm{B}$に行き着く確率
(ii) 地点$\mathrm{C}$を経由して地点$\mathrm{B}$に行き着く確率
(図は省略)
安田女子大学 私立 安田女子大学 2013年 第2問
定価が$1$個$60$円の商品がある.この商品を定価と同じ価格で販売したところ,$1$日の売り上げ個数は$1500$個であった.このとき,次の問いに答えよ.

(1)この商品を定価以上の価格で販売したところ,$1$円値上げするごとに$1$日の売り上げ個数が$15$個の割合で減少した.定価からの値上げ額を$x$円,$1$日の売り上げを$y$円として,$y$を$x$の関数で表せ.ただし,$x \geqq 0$,$y \geqq 0$とする.
(2)$(1)$の場合において,この商品の価格がいくらのとき,$1$日の売り上げが最高になるか求めよ.また,そのときの売り上げがいくらになるか求めよ.
(3)この商品を定価以下の価格で販売したところ,$1$円値下げするごとに$1$日の売り上げ個数が$50$個の割合で増えた.このとき,$(2)$で求めた売り上げの最高額よりも$1$日の売り上げが高くなるような価格の範囲を求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第3問
低所得者層が$20 \%$,中所得者層が$70 \%$,高所得者層が$10 \%$の社会がある.低所得者層の平均所得が$30$単位,中所得者層の平均所得が$50$単位,高所得者層の平均所得が$70$単位とする.

$xy$平面を考え,$x$軸を全所得者を所得の低い順に数えたときの累積人数の全所得者数に対する割合,$y$軸を対応する累積所得の全所得に対する割合にとる.例えば$x$座標が$0.2$のとき,$y$座標は低所得者全体の所得の全所得に対する割合である.これに対応する点は

\quad $\displaystyle \mathrm{A} \left( 0.2,\ \frac{0.2 \times 30}{0.2 \times 30 + 0.7 \times 50 + 0.1 \times 70} \right)$

となる.同様に$x$座標が$0.9,\ 1$の点$\mathrm{B}$,$\mathrm{C}$はそれぞれ

\quad $\displaystyle \mathrm{B} \left( 0.9,\ \frac{0.2 \times [(23)][(24)] + 0.[(25)][(26)] \times [(27)][(28)]}{0.2 \times 30 + 0.7 \times 50 + 0.1 \times 70} \right)$

\quad $\mathrm{C} \left(1,\ [(29)][(30)] \right)$

となる.
$x$軸上の$4$点を$\mathrm{O}(0,\ 0)$,$\mathrm{D}(0.2,\ 0)$,$\mathrm{E}(0.9,\ 0)$,$\mathrm{F}(1,\ 0)$としたとき,三角$\mathrm{OAD}$,台形$\mathrm{ADEB}$,台形$\mathrm{BEFC}$の面積の総和を平等度指数とよぶ.平等度指数は

$\displaystyle \frac{[(31)][(32)]}{[(33)][(34)]}$

ある.ここで所得に対して,一定の割合で課せられる税,すなわち所得税を導入をした.低所得者には無税,中所得者には$10$単位,高所得者には$20$単位の所得税を課した.税を払った残りを改めて所得としたときの平等度指数は

$\displaystyle \frac{[(35)][(36)][(37)]}{[(38)][(39)][(40)]}$

である.
明治大学 私立 明治大学 2012年 第1問
次の各設問の$[1]$から$[9]$までの空欄にあてはまる数値を入れよ.

(1)関数$\displaystyle y=3 \sin \left( 2x- \frac{2}{3} \pi \right)$のグラフは$y=3 \sin 2x$のグラフを$x$軸方向に$[1]$だけ平行移動したものであり,その正で最小の周期は$[2]$である.
(2)座標平面上の$\triangle \mathrm{ABC}$において,線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{P}$の座標が$(1,\ 5)$,線分$\mathrm{AC}$を$4:1$に外分する点$\mathrm{Q}$の座標が$(3,\ -3)$,$\triangle \mathrm{ABC}$の重心の座標が$(0,\ 2)$であるとき,点$\mathrm{A}$の座標は$([3],\ [4])$である.
(3)関数$\displaystyle y=\left( \log_3 \frac{x}{9} \right)^3 + 6\log_{\frac{1}{3}} \sqrt{3x} (1 \leqq x \leqq 27)$の最小値は$[5]$,最大値は$[6]$である.また,最大値$[6]$をとるときの$x$は$[7]$である.
(4)水を満たしたある容器の底に穴を開けてから$x$分後における容器内の水深を$y$メートルとすると,$y$は次式で表される.ただし,$0 \leqq x \leqq 90$とする.
\[ y = 0.9 \times 10^{-4}x^2 - 1.8\times 10^{-2} x +1 \]
$x_1$分から$x_2$分の間に,容器から出た水の量を$\int_{x_1}^{x_2} y\, dx$とする.最初の$1$分間($x_1=0,\ x_2=1$)に出た水の量に対する$5$分から$6$分の間($x_1=5,\ x_2=6$)に出た水の量の割合は約$[8] \%$である.容器内の水深$y$が,$x=0$のときの半分になるのは約$[9]$分後である.
スポンサーリンク

「割合」とは・・・

 まだこのタグの説明は執筆されていません。