タグ「初項」の検索結果

8ページ目:全248問中71問~80問を表示)
大阪薬科大学 私立 大阪薬科大学 2015年 第3問
次の問いに答えなさい.

(1)「自然数$m$を$4$で割ったときの余りが$r$であるならば,$m(m+1)$を$4$で割ったときの余りは$r(3-r)$と等しい」ことを$r=0,\ 1,\ 2,\ 3$のそれぞれの場合について$[う]$で示しなさい.ただし,自然数$m$が整数$q,\ r$を用いて
\[ m=4q+r \quad (0 \leqq r<4) \]
と表されるとき,$r$を,$m$を$4$で割ったときの余りという.
(2)$n$を自然数とする.数列$\{a_n\}$は,初項$a_1$が$2$,公差が$2$の等差数列であり,数列$\{b_n\}$は次の条件
\[ b_1=1,\quad b_{n+1}-b_n=\frac{a_{n+1}}{2} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定められている.

(i) 一般項$a_n,\ b_n$は,$n$を用いて表すとそれぞれ$a_n=[$\mathrm{I]$}$,$b_n=[$\mathrm{J]$}$である.
(ii) $2$つの集合$A,\ B$を
\[ A=\{a_n \;|\; n \text{は}39 \text{以下の自然数} \},\quad B=\{b_n \;|\; n \text{は}12 \text{以下の自然数} \} \]
とする.このとき,$A$と$B$の共通部分$A \cap B$の要素の個数を$s$とすると,$s=[$\mathrm{K]$}$である.
(iii) $t$を自然数の定数とする.$2$つの集合$C,\ D$を
\[ C=\{a_n \;|\; n \text{は} 100 \text{以下の自然数}\},\quad D=\{b_n \;|\; n \text{は} t \text{以下の自然数}\} \]
とする.このとき,$C$と$D$の和集合$C \cup D$の要素の個数が$111$であるならば,$t$の値は$t=[$\mathrm{L]$}$である.
西南学院大学 私立 西南学院大学 2015年 第4問
$p$を定数とする.等差数列$\{a_n\}$の初項から第$n$項までの和$S_n$が
\[ S_n=pn^2-8pn+p+4 \quad (n=1,\ 2,\ 3,\ \cdots) \]
で表される.このとき,$p=[ホマ]$である.また,$\{a_n\}$の初項は$[ミム]$,公差は$[メモ]$であり,$S_n$は$n=[ヤ]$のとき最大となる.
東京都市大学 私立 東京都市大学 2015年 第2問
次の問に答えよ.

(1)初項$\log_{10}5$,公差$\log_{10}3$の等差数列$\{a_n\}$の一般項を求めよ.さらに,$a_n<4$をみたす最大の自然数$n$を求めよ.
(2)関数$\displaystyle f(x)=\frac{2x-3}{x-2}$に対し,合成関数$f(f(f(x)))$を求めよ.
(3)定積分$\displaystyle \int_{\frac{1}{2}}^{\frac{\sqrt{3}}{2}} \frac{x}{\sqrt{1-x^2}} \, dx$の値を求めよ.
東京都市大学 私立 東京都市大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)$\log_2 104+\log_2 (27+2+2)-\log_2(2015 \times 2 \div 10)$の値は$[ア]$である.
(2)実数$x,\ y$が等式$(2+xi)(5+i)=3y-8i$を満たすとき,$x=[イ]$,$y=[ウ]$である.ただし,$i$は虚数単位とする.
(3)整式$P(x)=x^4$を$x-2$で割ると商が$[エ]$,余りが$[オ]$となる.$P(x)$を$(x-2)^2$で割ると商が$[カ]$,余りが$[キ]$となる.
(4)$3$次方程式$\displaystyle \frac{2}{3}x^3-ax^2+a=0$が異なる$3$個の実数解をもつとき,実数の定数$a$の値の範囲は$[ク]$である.
(5)自然数$n$に対して$a_n=2^{-n}$,$\displaystyle b_n=\int_{a_{n+1}}^{a_n} x \, dx$,$\displaystyle c_n=\sum_{k=1}^n b_k$と定義する.$b_n$を$n$の式で表すと$b_n=[ケ]$となるので,数列$\{b_n\}$は初項$[コ]$,公比$[サ]$の等比数列といえる.また,$c_n$を$n$の式で表すと$c_n=[シ]$となるので,数列$\{c_n\}$の和$\displaystyle S_n=\sum_{k=1}^n c_k$を$n$の式で表すと$\displaystyle S_n=[ス]$となる.
(6)$1$個のさいころを$4$回続けて投げるとする.$4$回とも同じ目が出る確率は$[セ]$であり,$1$から$4$までの目がそれぞれ$1$回ずつ出る確率は$[ソ]$である.また,出る目が$1$と$2$の$2$種類になる確率は$[タ]$であり,出る目が$1$から$6$までのいずれか$2$種類になる確率は$[チ]$である.
(7)$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(6,\ 3)$,$\mathrm{B}(2,\ 4)$を頂点とする$\triangle \mathrm{OAB}$に対し,$\overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}}$とする.実数$s,\ t$が条件$\displaystyle 0 \leqq s+t \leqq \frac{1}{2}$,$s \geqq 0$,$t \geqq 0$を満たしながら動くとき,点$\mathrm{P}$の存在範囲が$\triangle \mathrm{OA}^\prime \mathrm{B}^\prime$の周および内部であるとすると,点$\mathrm{A}^\prime$の座標は$[ツ]$,点$\mathrm{B}^\prime$の座標は$[テ]$である.ただし,点$\mathrm{A}^\prime$は直線$\mathrm{OA}$上,点$\mathrm{B}^\prime$は直線$\mathrm{OB}$上にあるものとする.また,$3$点$\mathrm{O}(0,\ 0)$,$\displaystyle \mathrm{C} \left( 9,\ \frac{9}{2} \right)$,$\mathrm{D}(3,\ 6)$を頂点とする$\triangle \mathrm{OCD}$に対し,$\overrightarrow{\mathrm{OQ}}=s^\prime \overrightarrow{\mathrm{OC}}+t^\prime \overrightarrow{\mathrm{OD}}$とする.点$\mathrm{Q}$の存在範囲が点$\mathrm{P}$の存在範囲と一致するとき,実数$s^\prime$と$t^\prime$の満たす条件は$[ト]$である.
(8)絶対値の記号を用いずに関数$f(x)=|3x^2-3x|-1$を表すと,$0 \leqq x \leqq 1$のとき$f(x)=[ナ]$となり,$x \leqq 0$,$1 \leqq x$のとき$f(x)=[ニ]$となる.したがって,定積分$\displaystyle \int_0^a f(x) \, dx$の値は,$0 \leqq a \leqq 1$のとき$[ヌ]$,$1 \leqq a$のとき$[ネ]$となる.
大阪工業大学 私立 大阪工業大学 2015年 第3問
数列$\{a_n\}$を$\displaystyle a_1=\frac{1}{2}$,$\displaystyle a_{n+1}=\frac{ka_n}{1+3a_n} (n=1,\ 2,\ 3,\ \cdots)$で定める.ただし,$k$は正の定数とする.このとき,次の空所を埋めよ.

(1)$k=1$のとき,$\displaystyle b_n=\frac{1}{a_n}$とおくと,数列$\{b_n\}$は初項$[ア]$,公差$[イ]$の等差数列となり,数列$\{a_n\}$の一般項は,$a_n=[ウ] (n=1,\ 2,\ 3,\ \cdots)$である.
(2)$k \neq 1$のとき,$\displaystyle c_n=\frac{1}{a_n}-\frac{3}{k-1}$とおくと,数列$\{c_n\}$は初項$[エ]$,公比$[オ]$の等比数列となり,数列$\{a_n\}$の一般項は,$\displaystyle a_n=\frac{k-1}{3+[カ]} (n=1,\ 2,\ 3,\ \cdots)$である.
特に,$k=[キ]$のとき,すべての自然数$n$について$a_n$は一定の値である.
近畿大学 私立 近畿大学 2015年 第3問
数列$1,\ 1,\ 4,\ 1,\ 4,\ 7,\ 1,\ 4,\ 7,\ 10,\ 1,\ 4,\ 7,\ 10,\ 13,\ 1,\ \cdots$について,次の問に答えよ.

(1)第$200$項を求めよ.
(2)初項から第$200$項までの和を求めよ.
(3)初項から第$n$項までの和を$S_n$とする.$5000<S_n<6000$を満たす$n$はいくつあるか.その個数を求めよ.
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2015年 第1問
以下の$(1)$~$(4)$の$[$1$]$~$[$4$]$に適切な値を答えなさい.ただし,$e$は自然対数の底とする.

(1)$A=e^2$とするとき,
\[ 8 \left( 1+\cos^3 \frac{\pi}{18} \right) \log_A e-\frac{3}{2} \left( 1+\cos \frac{\pi}{18} \right) \log_e A=[$1$] \]
である.
(2)$b$を正の定数,$x$を正の実数とする.方程式$\log_e x=bx$が異なる$2$つの実数解をもつのは$0<b<[$2$]$のときである.
(3)数列$\{c_n\} (n=1,\ 2,\ 3,\ \cdots)$を,初項$1$,公差$2$の等差数列とする.数列$\{c_n\}$の初項から第$n$項までの和$S_n$に対して$T_n=\log_e S_n$,$U_n=e^{T_n}$と定義する.数列$\{U_n\}$の初項から第$24$項までの和の値は$[$3$]$となる.

(4)定積分$\displaystyle \int_0^D \frac{2e^x}{2e^x+3} \, dx$の値は$[$4$]$である.ただし,$D=\log_e 3$とする.
山口東京理科大学 私立 山口東京理科大学 2015年 第4問
数列
\[ 2 \cdot 3,\ 5 \cdot 5,\ 8 \cdot 7,\ 11 \cdot 9,\ \cdots,\ a_n \cdot b_n,\ \cdots \]
の初項から第$n$項までの和$S_n$を求めることを考える.このとき,この数列の第$n$項$a_n \cdot b_n$が
\[ a_n \cdot b_n=\left( [ソ]n-[タ] \right) \cdot \left( [チ]n+[ツ] \right) \]
と表されるので,
\[ S_n=\frac{1}{2}n \left( [テ]n^2+[ト]n+[ナ] \right) \]
を得る.
岡山県立大学 公立 岡山県立大学 2015年 第2問
数列$\{a_n\}$の初項から第$n$項までの和$S_n$が
\[ S_n=\frac{a_n}{n+1}+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$a_1$を求めよ.
(2)一般項$a_n$を求めよ.
(3)無限級数$\displaystyle \sum_{n=1}^\infty a_n$の和を求めよ.
九州歯科大学 公立 九州歯科大学 2015年 第2問
$\{a_n\}$を初項$a_1=A$,公差$d$の等差数列とする.自然数$j$と$k$に対して
\[ S(j,\ k)=\sum_{i=j}^k a_i=a_j+a_{j+1}+a_{j+2}+\cdots +a_k \]
とおく.$S(1,\ 10)=800$,$S(11,\ 20)=200$が成り立つとき,次の問いに答えよ.ただし,$j<k$とする.

(1)定数$A$と$d$の値を求めよ.

(2)$\displaystyle \frac{S(n+1,\ n^2)}{n(n-1)}=\alpha n^2+\beta n+\gamma$をみたす定数$\alpha,\ \beta,\ \gamma$の値を求めよ.

(3)$S(n+1,\ n^2)<0$となる$n$の最小値$N$の値を求めよ.

(4)$\displaystyle T_n=\sum_{i=1}^n a_{5i}$とおくとき,極限$\displaystyle \lim_{n \to \infty} \frac{(T_n)^2}{S(n+1,\ n^2)}$の値を求めよ.
スポンサーリンク

「初項」とは・・・

 まだこのタグの説明は執筆されていません。