タグ「分数」の検索結果

94ページ目:全4648問中931問~940問を表示)
山形大学 国立 山形大学 2015年 第2問
$\displaystyle y=\cos \frac{\pi x}{2} (0 \leqq x \leqq 1)$で与えられる曲線を$C$とする.曲線$C$と$x$軸,$y$軸で囲まれた図形$S$について,以下の問いに答えよ.

(1)図形$S$の面積を求めよ.
(2)図形$S$を$x$軸のまわりに$1$回転させて得られる立体の体積を求めよ.
(3)部分積分法を用いて次の不定積分を求めよ.
\[ \int x^2 \sin x \, dx \]
(4)図形$S$を$y$軸のまわりに$1$回転させて得られる立体の体積を求めよ.その際,曲線$C$は変数$t$を媒介変数として
\[ x=\frac{2}{\pi}t,\quad y=\cos t \quad \left( 0 \leqq t \leqq \frac{\pi}{2} \right) \]
と表せることを利用せよ.
山形大学 国立 山形大学 2015年 第1問
次の各問に答えよ.

(1)$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$の長さをそれぞれ$a,\ b,\ c$で表し,$\angle \mathrm{A}$の大きさを$A$で表すことにする.この三角形において
\[ \frac{a+b}{6}=\frac{b+c}{5}=\frac{c+a}{7} \]
であり,面積が$3 \sqrt{15}$のとき,$\cos A$と$a$を求めよ.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=2a_n-2^n$で与えられるとき,次の問に答えよ.

(i) $a_1$を求めよ.
(ii) $a_{n+1}$と$a_n$の関係式を求めよ.
(iii) 一般項$a_n$を求めよ.
大阪教育大学 国立 大阪教育大学 2015年 第3問
$a,\ b$は$0<a<b$を満たす定数とし,関数$y=\log x$のグラフを$G$とする.点$\mathrm{C}$が曲線$G$上を点$\mathrm{A}(a,\ \log a)$から点$\mathrm{B}(b,\ \log b)$まで動くとき,点$\mathrm{C}$から$x$軸への垂線と線分$\mathrm{AB}$との交点を$\mathrm{P}$とし,線分$\mathrm{CP}$の長さの最大値を$L$とする.このとき,以下の問に答えよ.ただし,$\log x$は自然対数を表すものとする.

(1)不等式$\displaystyle a<\frac{b-a}{\log b-\log a}<b$が成り立つことを証明せよ.
(2)$\displaystyle h=\frac{b}{a}$とおくとき,$L$を$h$を用いて表せ.
(3)実数$p,\ q,\ r$が$a<p<b$,$a<q<b$,$a<r<b$を満たすとき,不等式
\[ \frac{p+q+r}{3}<e^L \sqrt[3]{pqr} \]
が成り立つことを証明せよ.ただし,$e$は自然対数の底とする.
山形大学 国立 山形大学 2015年 第1問
二つの放物線

$C_1:y=x^2$
$\displaystyle C_2:y=\frac{1}{2}(x-a)^2+b$

がある.ただし,$a,\ b$は実数であり,$b>0$とする.以下の問いに答えよ.

(1)放物線$C_1$上の点$\mathrm{P}(p,\ p^2)$における接線$\ell$の方程式を求めよ.
(2)接線$\ell$が$C_2$にも接する場合の$p$を$a$と$b$を用いて表せ.
(3)$(2)$より$C_1,\ C_2$の両方に接する直線が$2$本存在することがわかる.この二つの直線の交点$\mathrm{Q}$の座標を$a$と$b$を用いて表せ.
(4)放物線$C_2$の頂点が曲線$y=e^{-2x^2}$上を動くとき,交点$\mathrm{Q}$の軌跡を$y=f(x)$で表す.関数$f(x)$を求めよ.また$f(x)$の増減と凹凸を調べ軌跡の概形をかけ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の放物線$\displaystyle y=x^2-\frac{1}{2}ax+2$を$C$とする.放物線$C$上に点$\mathrm{P}$があり,点$\mathrm{P}$の$x$座標が$a$であるとき,次の問に答えよ.ただし,$a>0$とする.

(1)点$\mathrm{P}$における放物線$C$の接線$\ell_1$の方程式を求めよ.
(2)点$\mathrm{P}$を通り,直線$\ell_1$に垂直な直線$\ell_2$の方程式を求めよ.
(3)放物線$C$と直線$\ell_2$の交点で,点$\mathrm{P}$と異なる点を$\mathrm{Q}$とするとき,点$\mathrm{Q}$の座標を求めよ.
(4)放物線$C$と直線$\ell_2$で囲まれた図形の面積$S(a)$を求めよ.
(5)面積$S(a)$の最小値と,そのときの$a$の値を求めよ.
山形大学 国立 山形大学 2015年 第1問
次の各問に答えよ.

(1)実数$k$に対し,方程式$x |1-\abs{x|}=k$の異なる実数解の個数を求めよ.
(2)赤玉$a$個,白玉$b$個,青玉$c$個が入っている袋があり,次の$(ⅰ)$,$(ⅱ)$,$(ⅲ)$が成り立つとする.

(i) この袋から$1$個の玉を取り出すとき,赤玉が出る確率は$\displaystyle\frac{1}{2}$である.
(ii) この袋から$2$個の玉を同時に取り出すとき,赤玉と白玉が$1$個ずつ出る確率は$\displaystyle\frac{1}{7}$である.
(iii) この袋から$3$個の玉を同時に取り出すとき,赤玉と白玉と青玉が$1$個ずつ出る確率は$\displaystyle\frac{6}{35}$である.

このとき,$a,\ b,\ c$を求めよ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
山形大学 国立 山形大学 2015年 第3問
座標平面上の点$(\sqrt{3},\ 0)$を$\mathrm{A}$,点$(-\sqrt{3},\ 0)$を$\mathrm{B}$とする.点$\mathrm{P}(x_1,\ y_1)$が楕円$\displaystyle \frac{x^2}{4}+y^2=1$上にあり,$x_1>0$,$y_1>0$とする.このとき,次の問に答えよ.

(1)$|\overrightarrow{\mathrm{BP}}|$を$x_1$を用いて表せ.
(2)$|\overrightarrow{\mathrm{AP}}|+|\overrightarrow{\mathrm{BP}}|$の値を求めよ.
(3)楕円上の点$\mathrm{P}$における接線$\ell$の方程式を求めよ.
(4)直線$\ell$の法線ベクトルの$1$つを$\overrightarrow{n}$とおく.このとき,$\overrightarrow{\mathrm{AP}}$と$\overrightarrow{n}$のなす角は$\overrightarrow{\mathrm{BP}}$と$\overrightarrow{n}$のなす角に等しいことを示せ.
山形大学 国立 山形大学 2015年 第4問
曲線$y=e^x$上の点$\mathrm{A}(a,\ e^a)$における接線$\ell$と$x$軸との交点を$\mathrm{B}(b,\ 0)$とする.ただし,$a>1$とする.この曲線と直線$\ell$および直線$x=b$で囲まれた図形を$D$とする.このとき,次の問に答えよ.

(1)$b$を$a$を用いて表せ.
(2)図形$D$の面積$S$を$a$を用いて表せ.
(3)定積分$\displaystyle \int_{e^b}^{e^a} (\log y)^2 \, dy$を$a$を用いて表せ.
(4)図形$D$を$y$軸のまわりに$1$回転してできる立体の体積$V$を$a$を用いて表せ.
(5)$\displaystyle \lim_{a \to \infty} \frac{V}{ae^a}$と$\displaystyle \lim_{a \to \infty} \frac{V}{aS}$を求めよ.
山形大学 国立 山形大学 2015年 第2問
四面体$\mathrm{OABC}$は,$\displaystyle \angle \mathrm{AOB}=\frac{\pi}{3}$,$\displaystyle \angle \mathrm{AOC}=\angle \mathrm{BOC}=\frac{2}{3} \pi$,$\mathrm{OA}=\mathrm{OB}=2$,$\mathrm{OC}=3$を満たす.点$\mathrm{C}$から平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{CH}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$の面積を求めよ.
(2)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{b} \cdot \overrightarrow{c}$,$\overrightarrow{a} \cdot \overrightarrow{c}$の値を求めよ.
(3)$\displaystyle \overrightarrow{\mathrm{CH}}=-\frac{1}{2} \overrightarrow{a}-\frac{1}{2} \overrightarrow{b}-\overrightarrow{c}$を示せ.
(4)四面体$\mathrm{OABC}$の体積を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。