タグ「分数」の検索結果

90ページ目:全4648問中891問~900問を表示)
和歌山大学 国立 和歌山大学 2015年 第4問
放物線$\displaystyle C:y=\frac{1}{4}x^2$と点$\mathrm{P}(0,\ -4)$がある.直線$\ell,\ m,\ n$と点$\mathrm{Q}$を以下のように定める.

直線$\ell$は,$\mathrm{P}$から$C$に引いた接線のうち,傾きが正のものとし,その接点を$\mathrm{Q}$とする.
直線$m$は,$\mathrm{Q}$を通り,$\ell$に垂直なものとする.
直線$n$は,$m$と$C$の$\mathrm{Q}$以外の交点を通り,$y$軸に平行なものとする.

次の問いに答えよ.

(1)接線$\ell$の方程式と点$\mathrm{Q}$の座標を求めよ.
(2)直線$m$の方程式を求めよ.
(3)放物線$C$と$x$軸および直線$n$で囲まれた部分の面積$S$を求めよ.
名古屋大学 国立 名古屋大学 2015年 第2問
数直線上にある$1,\ 2,\ 3,\ 4,\ 5$の$5$つの点と$1$つの石を考える.石がいずれかの点にあるとき,
\[ \left\{ \begin{array}{l}
\text{石が点$1$にあるならば,確率$1$で点$2$に移動する} \\
\text{石が点$k (k=2,\ 3,\ 4)$にあるならば,確率$\displaystyle \frac{1}{2}$で点$k-1$に,} \\
\text{確率$\displaystyle \frac{1}{2}$で点$k+1$に移動する} \\
\text{石が点$5$にあるならば,確率$1$で点$4$に移動する}
\end{array} \right. \]
という試行を行う.石が点$1$にある状態から始め,この試行を繰り返す.試行を$n$回繰り返した後に,石が点$k (k=1,\ 2,\ 3,\ 4,\ 5)$にある確率を$P_n(k)$とするとき,次の問に答えよ.

(1)$n=6$のときの確率$P_6(k) (k=1,\ 2,\ 3,\ 4,\ 5)$をそれぞれ求めよ.
(2)石が移動した先の点に印をつける(点$1$には初めから印がついているものとする).試行を$6$回繰り返した後に,$5$つの点全てに印がついている確率を求めよ.
(3)$n \geqq 1$のとき,$P_n(3)$を求めよ.
名古屋大学 国立 名古屋大学 2015年 第3問
$e$を自然対数の底とし,$t$を$t>e$となる実数とする.このとき,曲線$C:y=e^x$と直線$y=tx$は相異なる$2$点で交わるので,交点のうち$x$座標が小さいものを$\mathrm{P}$,大きいものを$\mathrm{Q}$とし,$\mathrm{P}$,$\mathrm{Q}$の$x$座標をそれぞれ$\alpha,\ \beta (\alpha<\beta)$とする.また,$\mathrm{P}$における$C$の接線と$\mathrm{Q}$における$C$の接線との交点を$\mathrm{R}$とし,曲線$C$,$x$軸および$2$つの直線$x=\alpha$,$x=\beta$で囲まれる部分の面積を$S_1$,曲線$C$および$2$つの直線$\mathrm{PR}$,$\mathrm{QR}$で囲まれる部分の面積を$S_2$とする.このとき,次の問に答えよ.

(1)$\displaystyle \frac{S_2}{S_1}$を$\alpha$と$\beta$を用いて表せ.
(2)$\displaystyle \alpha<\frac{e}{t},\ \beta<2 \log t$となることを示し,$\displaystyle \lim_{t \to \infty} \frac{S_2}{S_1}$を求めよ.必要ならば,$x>0$のとき$e^x>x^2$であることを証明なしに用いてよい.
名古屋大学 国立 名古屋大学 2015年 第4問
数直線上にある$1,\ 2,\ 3,\ 4,\ 5$の$5$つの点と$1$つの石を考える.石がいずれかの点にあるとき,
\[ \left\{ \begin{array}{l}
\text{石が点$1$にあるならば,確率$1$で点$2$に移動する} \\
\text{石が点$k (k=2,\ 3,\ 4)$にあるならば,確率$\displaystyle \frac{1}{2}$で点$k-1$に,} \\
\text{確率$\displaystyle \frac{1}{2}$で点$k+1$に移動する} \\
\text{石が点$5$にあるならば,確率$1$で点$4$に移動する}
\end{array} \right. \]
という試行を行う.石が点$1$にある状態から始め,この試行を繰り返す.また,石が移動した先の点に印をつけていく(点$1$には初めから印がついているものとする).このとき,次の問に答えよ.

(1)試行を$6$回繰り返した後に,石が点$k (k=1,\ 2,\ 3,\ 4,\ 5)$にある確率をそれぞれ求めよ.
(2)試行を$6$回繰り返した後に,$5$つの点全てに印がついている確率を求めよ.
(3)試行を$n$回($n \geqq 1$)繰り返した後に,ちょうど$3$つの点に印がついている確率を求めよ.
茨城大学 国立 茨城大学 2015年 第2問
以下の各問に答えよ.

(1)$0$でない$2$つの実数$a,\ b$が$a+b+1=0$を満たすとき,$\displaystyle \frac{b^2}{a}+\frac{1}{ab}+\frac{a^2}{b}$の値を求めよ.
(2)$x$の$3$次方程式$x^3-(m+1)x^2-x+m+1=0$が異なる$3$つの実数解をもつとする.これら$3$つの実数解からなる数列が公差$2$の等差数列となるような定数$m$の値をすべて求めよ.
(3)${21}^{2015}$を$400$で割ったときの余りを求めよ.
茨城大学 国立 茨城大学 2015年 第4問
$xy$平面において,関数$\displaystyle y=\frac{1}{\sqrt{x}}$が表す曲線を$C$とし,$C$上の点$\displaystyle \mathrm{P} \left( t,\ \frac{1}{\sqrt{t}} \right)$を考える.ただし,$t>0$とする.点$\mathrm{P}$における曲線$C$の接線が$x$軸と交わる点を$\mathrm{Q}$とする.このとき,以下の各問に答えよ.

(1)点$\mathrm{Q}$の座標を求めよ.
(2)曲線$C$,$x$軸,直線$x=t$,および点$\mathrm{Q}$を通り$x$軸に垂直な直線で囲まれた部分を,$x$軸のまわりに$1$回転してできる立体の体積を求めよ.
(3)線分$\mathrm{PQ}$の長さを$L(t)$とする.点$\mathrm{P}$が$C$上を動くとき,$L(t)$の最小値を求めよ.
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第4問
次の問いに答えよ.

(1)数列$\{a_n\}$が次の条件を満たしているとき$\{a_n\}$の一般項を求めよ.
\[ a_1=1,\quad a_n+a_{n+1}-\frac{2n+1}{n(n+1)}=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
(2)数列$\{b_n\}$が次の条件を満たしているとき$\{b_n\}$の一般項を求めよ.
\[ b_1=2,\quad b_n+b_{n+1}-\frac{2n+1}{n(n+1)}=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
京都工芸繊維大学 国立 京都工芸繊維大学 2015年 第1問
$xyz$空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(2,\ 4,\ -1)$を考える.直線$\mathrm{AB}$上の点$\mathrm{C}_1$,$C_2$はそれぞれ次の条件を満たす.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$|\overrightarrow{\mathrm{OC}}|$は$\mathrm{C}$が$\mathrm{C}_1$に一致するとき最小となる.

直線$\mathrm{AB}$上を点$\mathrm{C}$が動くとき,$\displaystyle \frac{|\overrightarrow{\mathrm{AC}}|}{|\overrightarrow{\mathrm{OC}}|}$は$\mathrm{C}$が$\mathrm{C}_2$に一致するとき最大となる.

このとき,次の問いに答えよ.

(1)$|\overrightarrow{\mathrm{OC}_1}|$の値および内積$\overrightarrow{\mathrm{AC}_1} \cdot \overrightarrow{\mathrm{OC}_1}$の値を求めよ.

(2)$\displaystyle \frac{|\overrightarrow{\mathrm{AC}_2}|}{|\overrightarrow{\mathrm{OC}_2}|}$の値および内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}_2}$の値を求めよ.

(3)$2$つの三角形$\triangle \mathrm{AC}_1 \mathrm{O}$と$\triangle \mathrm{AOC}_2$は相似であることを示せ.
茨城大学 国立 茨城大学 2015年 第2問
座標平面上の相異なる$3$点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$が$2$つの条件
\[ \left\{ \begin{array}{l}
|\overrightarrow{\mathrm{PQ}}|=|\overrightarrow{\mathrm{QR}}| \\
\overrightarrow{\mathrm{QP}} \cdot \overrightarrow{\mathrm{QR}}=-\displaystyle\frac{1}{3} \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \cdots\cdots (*) \]
を満たしながら動くものとする.$|\overrightarrow{\mathrm{PQ}}|$を$a$とする.以下の各問に答えよ.

(1)$|\overrightarrow{\mathrm{PR}}|$を$a$で表せ.
(2)$\displaystyle \angle \mathrm{PQR}=\frac{2}{3} \pi$のときの$a$を求めよ.また,$\angle \mathrm{PQR}=\pi$のときの$a$を求めよ.
(3)$a$がとり得る値の範囲を求めよ.
(4)原点を$\mathrm{O}$とし,点$\mathrm{R}$を$(1,\ 0)$に固定する.点$\mathrm{P}$,$\mathrm{Q}$が$(*)$および
\[ |\overrightarrow{\mathrm{OP}}|=|\overrightarrow{\mathrm{PQ}}| \]
を満たしながら動くとする.点$\mathrm{P}$が描く軌跡を求めよ.
(5)$(4)$において,点$\mathrm{P}$が描く軌跡の長さを求めよ.
信州大学 国立 信州大学 2015年 第1問
原点を中心とする半径$1$の円$\mathrm{O}$の上に,$3$点$\mathrm{A}(0,\ 1)$,$\displaystyle \mathrm{B} \left( -\frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$,$\displaystyle \mathrm{C} \left( \frac{\sqrt{3}}{2},\ -\frac{1}{2} \right)$をとる.線分$\mathrm{AC}$の中点を$\mathrm{M}$,線分$\mathrm{BC}$の中点を$\mathrm{N}$とする.$2$点$\mathrm{M}$,$\mathrm{N}$を通る直線が円$\mathrm{O}$と交わる$2$点のうち,$\mathrm{N}$に近い方の交点を$\mathrm{Q}$とする.このとき,線分$\mathrm{NQ}$の長さを求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。