タグ「分数」の検索結果

83ページ目:全4648問中821問~830問を表示)
東京農工大学 国立 東京農工大学 2015年 第4問
$f(x)=\cos x+\sin x-1$とする.$g(x)$は
\[ g(x)=|f(x)|-\frac{1}{4 \pi^2} \left\{ \int_0^{2\pi} tg(t) \, dt-3\pi \right\} \]
を満たす連続関数とする.次の問いに答えよ.

(1)区間$0 \leqq x \leqq 2\pi$において$f(x)>0$を満たす$x$の範囲を求めよ.
(2)不定積分$\displaystyle \int xf(x) \, dx$を求めよ.
(3)定積分$\displaystyle \int_0^{2\pi} t |f(t)| \, dt$の値を求めよ.
(4)$g(x)$を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第1問
座標平面上の$3$点$\mathrm{P}_0(1,\ 0)$,$\mathrm{Q}_0(1,\ 3)$,$\displaystyle \mathrm{P}_1 \left( -\frac{1}{2},\ 3 \right)$に対して,点$\mathrm{P}_n$,$\mathrm{Q}_n$を以下で定める.
\[ \overrightarrow{\mathrm{P}_n \mathrm{Q}_n}=-\frac{1}{4} \overrightarrow{\mathrm{P}_{n-1} \mathrm{Q}_{n-1}},\quad \overrightarrow{\mathrm{Q}_n \mathrm{P}_{n+1}}=-\frac{1}{4} \overrightarrow{\mathrm{Q}_{n-1} \mathrm{P}_n} \quad (n=1,\ 2,\ 3,\ \cdots) \]
このとき次の問に答えよ.

(1)$\mathrm{Q}_1,\ \mathrm{P}_2$の座標を求めよ.
(2)$n=1,\ 2,\ 3,\ \cdots$に対して,$\overrightarrow{\mathrm{P}_{n-1} \mathrm{P}_n}$の成分を求めよ.
(3)$n=0,\ 1,\ 2,\ \cdots$に対して,$\mathrm{P}_n$の座標を求めよ.
福岡教育大学 国立 福岡教育大学 2015年 第4問
$a$を正の定数とし,曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と$y$軸によって囲まれる部分の面積が$\sqrt{3}-1$であるとする.次の問いに答えよ.

(1)$a$の値を求めよ.
(2)曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$の交点を求めよ.
(3)曲線$\displaystyle y=a \cos x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$\displaystyle y=\tan x \left( 0 \leqq x<\frac{\pi}{2} \right)$と$y$軸によって囲まれる部分を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
東京農工大学 国立 東京農工大学 2015年 第2問
次の問いに答えよ.

(1)$r$を$|r|<1$である実数とする.自然数$n$に対して
\[ S_n=1+2r+3r^2+\cdots +nr^{n-1} \]
とおく.
\[ S=\lim_{n \to \infty} S_n \]
を$r$の式で表せ.ただし$|r|<1$のとき$\displaystyle \lim_{n \to \infty} nr^n=0$であることを用いてよい.
(2)$n$を自然数とする.$2$人の弓道部員$\mathrm{A}$,$\mathrm{B}$が矢を的に命中させる確率は,$\mathrm{A}$が$\displaystyle \frac{4}{5}$,$\mathrm{B}$が$\displaystyle \frac{1}{2}$である.$\mathrm{A}$,$\mathrm{B}$が的に向かってそれぞれ$n$回ずつ矢を射る.

(i) $n=1$のとき,$\mathrm{A}$の射る矢が命中する確率を$p_1$とし,$\mathrm{A}$の射る矢が命中せずに$\mathrm{B}$の射る矢が命中する確率を$q_1$とする.$p_1+q_1$を求めよ.
(ii) $n \geqq 2$のとき,$1$回目から$(n-1)$回目まで$\mathrm{A}$の射る矢も$\mathrm{B}$の射る矢も命中せず,$n$回目に$\mathrm{A}$の射る矢が命中する確率を$p_n$とする.$p_n$を求めよ.
(iii) $n \geqq 2$のとき,$\mathrm{A}$の射る矢は$1$回目から$n$回目まで命中せず,$\mathrm{B}$の射る矢は$1$回目から$(n-1)$回目まで命中せずに$n$回目のみ命中する確率を$q_n$とする.$q_n$を求めよ.

(3)$(2)$で求めた$p_n (n=1,\ 2,\ 3,\ \cdots)$に対して
\[ E=\sum_{n=1}^\infty (2n-1)p_n \]
とおく.$E$の値を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第2問
$\triangle \mathrm{OAB}$に対して,辺$\mathrm{OA}$の中点を$\mathrm{L}$,辺$\mathrm{AB}$の中点を$\mathrm{M}$,線分$\mathrm{OM}$を$1:2$に内分する点を$\mathrm{P}$とする.また,直線$\mathrm{OB}$と直線$\mathrm{AP}$の交点を$\mathrm{N}$,直線$\mathrm{OM}$と直線$\mathrm{BL}$の交点を$\mathrm{Q}$,直線$\mathrm{AN}$と直線$\mathrm{BL}$の交点を$\mathrm{R}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\mathrm{OB}=\overrightarrow{b}$とおく.

(1)$\overrightarrow{\mathrm{OP}}$および$\overrightarrow{\mathrm{ON}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(2)$\overrightarrow{\mathrm{OQ}}$および$\overrightarrow{\mathrm{OR}}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)線分の長さの比$\mathrm{BQ}:\mathrm{QR}:\mathrm{RL}$を求めよ.
(4)$\triangle \mathrm{OAB}$の面積を$S_1$,$\triangle \mathrm{PQR}$の面積を$S_2$とするとき,$\displaystyle \frac{S_2}{S_1}$を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第2問
等式
\[ f(x)+\int_1^2 (x-kt) f(t) \, dt=17x-28 \cdots\cdots (*) \]
について,次の問に答えよ.

(1)$k=1$のとき,$(*)$を満たす関数$f(x)$を求めよ.
(2)$\displaystyle k=\frac{30}{17}$のとき,$(*)$を満たす関数$f(x)$に対して,$y=f(x)$のグラフは常にある定点を通ることを示し,その定点の座標を求めよ.
東京海洋大学 国立 東京海洋大学 2015年 第4問
座標平面上の曲線$y=x^2(1-x)$を$C$とし,直線$y=-x$を$\ell$とする.数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.$\displaystyle a_1=\frac{2}{5}$とし,$x=a_n (n=1,\ 2,\ 3,\ \cdots)$における$C$の接線と$\ell$の交点の$x$座標を$a_{n+1}$とする.このとき次の問に答えよ.

(1)$n$を自然数とするとき,$a_{n+1}$を$a_n$で表せ.
(2)$n$を自然数とするとき,$0<a_{n+1}<{a_n}^2$を示せ.
富山大学 国立 富山大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \tan \frac{5}{12} \pi$の値を求めよ.
(2)$\displaystyle \sqrt{n}<\tan \frac{5}{12} \pi<\sqrt{n+1}$を満たす自然数$n$を求めよ.
富山大学 国立 富山大学 2015年 第3問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
富山大学 国立 富山大学 2015年 第1問
次の問いに答えよ.

(1)関数$f(x)$は区間$[a,\ b]$で連続であり,区間$(a,\ b)$で第$2$次導関数$f^{\prime\prime}(x)$をもつとする.さらに,区間$(a,\ b)$で$f^{\prime\prime}(x)<0$が成り立つとする.$y=g(x)$を$2$点$(a,\ f(a))$,$(b,\ f(b))$を通る直線の方程式とするとき,区間$(a,\ b)$で常に$f(x)>g(x)$であることを示せ.
(2)$n$を$2$以上の自然数とするとき,$j=1,\ 2,\ \cdots,\ n-1$について
\[ \frac{\log j+\log (j+1)}{2}<\int_j^{j+1} \log x \, dx \]
が成り立つことを示せ.
(3)$n$を$2$以上の自然数とするとき,次の不等式が成り立つことを示せ.
\[ \sqrt{n!(n-1)!}<n^n e^{-n+1} \]
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。