タグ「分数」の検索結果

82ページ目:全4648問中811問~820問を表示)
愛媛大学 国立 愛媛大学 2015年 第1問
次の問いに答えよ.

(1)不定積分$\displaystyle \int x^3e^{x^2} \, dx$を求めよ.
(2)定積分$\displaystyle \int_{\frac{1}{e}}^e |\log x| \, dx$を求めよ.
(3)楕円$\displaystyle \frac{x^2}{4}+\frac{y^2}{2}=1$上の点$(\sqrt{2},\ 1)$における接線の方程式を求めよ.
(4)$\displaystyle \left( \frac{1+\sqrt{5}}{2} \right)^3$からその整数部分を引いた値を$a$とするとき,$a^4+5a^3+4a^2+4a$の値を求めよ.
(5)実数$a,\ b,\ c$は$0<a<b<c$,$\displaystyle \frac{1}{b}=\frac{1}{2} \left( \frac{1}{a}+\frac{1}{c} \right)$をみたすとする.このとき,$|b-a|<|b-c|$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2015年 第4問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2015年 第3問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
愛媛大学 国立 愛媛大学 2015年 第1問
次の問いに答えよ.

(1)$\displaystyle \left( \frac{1+\sqrt{5}}{2} \right)^3$からその整数部分を引いた値を$a$とするとき,$a^2+4a+5$の値を求めよ.
(2)次の連立方程式を解け.
\[ \left\{ \begin{array}{l}
\log_2x-\log_2y=1 \\
x \log_2 x-y \log_2 y=0
\end{array} \right. \]
(3)$s,\ t$を実数とする.座標空間内の同一平面上にある$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(4,\ s,\ t)$,$\mathrm{B}(2,\ 3,\ 2)$,$\mathrm{C}(0,\ 5,\ 1)$が$\angle \mathrm{AOB}={90}^\circ$をみたすとき,$s,\ t$の値を求めよ.
(4)初項が$3$,公比が$4$である等比数列の第$k$項を$a_k$とする.このとき,$\displaystyle \sum_{k=n}^{n^2}a_k$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第1問
等差数列$\{a_n\}$は
\[ a_1=\frac{1}{6},\quad \sum_{k=11}^{40}a_k=250 \]
を満たすとする.このとき,次の問に答えよ.

(1)数列$\{a_n\}$の一般項を求めよ.
(2)$a_n \leqq 10$となる$n$の最大値$N$を求めよ.
(3)$(2)$で求めた値$N$に対して,和$\displaystyle \sum_{k=1}^N a_k$を求めよ.
佐賀大学 国立 佐賀大学 2015年 第3問
$a$を定数とし,関数
\[ f(\theta)=\sin^3 \theta+a \cos 2\theta+\frac{21}{4} \sin \theta \]
は$\displaystyle f \left( \frac{\pi}{2} \right)=\frac{13}{4}$を満たすものとする.このとき,次の問に答えよ.

(1)$a$の値を求めよ.
(2)$t=\sin \theta$とおくとき,$f(\theta)$を$t$を用いて表せ.
(3)$\displaystyle -\frac{\pi}{2} \leqq \theta \leqq \frac{\pi}{2}$における$f(\theta)$の最大値,最小値を求めよ.また,そのときの$\theta$の値を求めよ.
福岡教育大学 国立 福岡教育大学 2015年 第1問
次の問いに答えよ.

(1)${(x-3y+2z)}^7$の展開式における$x^4y^2z$の項の係数を求めよ.
(2)$a$を定数とし,$0<a<1$とする.不等式
\[ \log_a (a-x-y)>\log_ax+\log_ay \]
が表す領域を図示せよ.
(3)$n$は$3$以上の自然数とする.数学的帰納法によって,次の不等式を証明せよ.
\[ 2^n>\frac{1}{2}n^2+n \]
福岡教育大学 国立 福岡教育大学 2015年 第4問
次の問いに答えよ.ただし,対数は自然対数とする.

(1)関数$f(x)=x-\log x$の最小値を求めよ.
(2)$a$を$1$より大きい定数とし,曲線$\displaystyle y=a \sin x \left( 0 \leqq x \leqq \frac{\pi}{2} \right)$と曲線$y=\tan x$ $\displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right)$によって囲まれる部分$D$の面積が$1-\log 2$であるとする.次の(ア),(イ)に答えよ.

\mon[(ア)] $a$の値を求めよ.
\mon[(イ)] $D$を$x$軸の周りに$1$回転させてできる立体の体積を求めよ.
福岡教育大学 国立 福岡教育大学 2015年 第1問
次の問いに答えよ.

(1)${(x-3y+2z)}^7$の展開式における$x^4y^2z$の項の係数を求めよ.
(2)$a$は正の定数で,$a \neq 1$とする.不等式
\[ \log_a (a-x-y)>\log_ax+\log_ay \]
が表す領域を図示せよ.
(3)$n$は$3$以上の自然数とする.数学的帰納法によって,次の不等式を証明せよ.
\[ 2^n>\frac{1}{2}n^2+n \]
福岡教育大学 国立 福岡教育大学 2015年 第3問
平面上に$\triangle \mathrm{ABC}$と点$\mathrm{O}$がある.$\triangle \mathrm{ABC}$の内部に点$\mathrm{D}$があって,三角形の面積比が
\[ \triangle \mathrm{DBC}:\triangle \mathrm{DCA}:\triangle \mathrm{DAB}=p:q:r \]
であるとする.次の問いに答えよ.

(1)直線$\mathrm{AD}$と辺$\mathrm{BC}$の交点を$\mathrm{S}$,直線$\mathrm{BD}$と辺$\mathrm{AC}$の交点を$\mathrm{T}$とするとき,$\mathrm{BS}:\mathrm{SC}$および$\mathrm{CT}:\mathrm{TA}$を$p,\ q,\ r$を用いて表せ.

(2)$\displaystyle \overrightarrow{\mathrm{OD}}=\frac{p \overrightarrow{\mathrm{OA}}+q \overrightarrow{\mathrm{OB}}+r \overrightarrow{\mathrm{OC}}}{p+q+r}$となることを示せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。