タグ「分数」の検索結果

50ページ目:全4648問中491問~500問を表示)
同志社大学 私立 同志社大学 2016年 第3問
$r$を$r>1$である定数とする.$\mathrm{O}$を原点とする座標平面上において,点$\mathrm{P}(a,\ b)$は,原点$\mathrm{O}$を除く円$C:(x-r)^2+y^2=r^2$上を動くとする.点$\mathrm{P}$に対して点$\mathrm{Q}(p,\ q)$は,$\mathrm{OP} \times \mathrm{OQ}=1$を満たし,$3$点$\mathrm{O}$,$\mathrm{P}$,$\mathrm{Q}$は一直線上にあり,$p>0$であるとする.また点$\mathrm{Q}$に対して,点$\mathrm{R}(p,\ -q)$を考える.このとき次の問いに答えよ.

(1)$p,\ q$をそれぞれ$a,\ b$を用いて表せ.
(2)点$\mathrm{P}$が円$C$上を動くとき,点$\mathrm{R}$の軌跡を$r$を用いて表せ.
(3)$2$点$\mathrm{P}$,$\mathrm{R}$の距離$d$を$a,\ r$を用いて表せ.
(4)$r$が$\displaystyle r^2>\frac{1}{4}(2+\sqrt{5})$を満たすとき,$2$点$\mathrm{P}$,$\mathrm{R}$の距離$d$の最小値とそのときの$a$の値を$r$を用いて表せ.
明治大学 私立 明治大学 2016年 第2問
同一平面上において,点$\mathrm{O}$を中心とする半径$10$の円周上に$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.線分$\mathrm{AB}$と直線$\mathrm{CO}$は交点を持ち,この交点を$\mathrm{P}$とする.$\mathrm{CP}=14$であり,$\mathrm{AP}:\mathrm{BP}=2:3$である.以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{CA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{CB}}=\overrightarrow{b}$とすると,$\displaystyle \overrightarrow{\mathrm{CP}}=\frac{[チ] \overrightarrow{a}+[ツ] \overrightarrow{b}}{[テ]}$である.
また,$\displaystyle \overrightarrow{\mathrm{OA}}=\frac{[ト] \overrightarrow{a}-[ナ] \overrightarrow{b}}{[ニ]}$と表すことができる.
(2)$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$,$\overrightarrow{\mathrm{OC}}$についての計算から,内積$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[ヌ][ネ][ノ]}{[ハ]}$となる.

さらに,$\mathrm{CA}=[ヒ] \sqrt{[フ][ヘ]}$,$\mathrm{CB}=[ホ] \sqrt{[マ]}$である.

(3)三角形$\mathrm{ABC}$の面積は$\displaystyle \frac{[ミ][ム][メ] \sqrt{[モ]}}{[ヤ]}$である.
明治大学 私立 明治大学 2016年 第5問
次の設問の$[ ]$に適当な数を入れなさい.

正四面体$\mathrm{ABCD}$があり,その頂点間を点$\mathrm{P}$が動く場合について考える.点$\mathrm{P}$がある頂点にいるとき,$1$秒後に同じ頂点にいる確率を$\displaystyle \frac{2}{3}$,ほかの$3$つの頂点にいる確率をそれぞれ$\displaystyle \frac{1}{9}$とする.

(1)頂点$\mathrm{A}$にいる点$\mathrm{P}$が$2$秒後に頂点$\mathrm{A}$にいる確率は$[ ]$であり,頂点$\mathrm{B}$にいる確率は$[ ]$である.
(2)頂点$\mathrm{A}$にいる点$\mathrm{P}$が$3$秒後に頂点$\mathrm{A}$にいる確率は$[ ]$である.
(3)頂点$\mathrm{A}$にいる点$\mathrm{P}$が$4$秒後に頂点$\mathrm{A}$にいる確率は$[ ]$である.
神戸薬科大学 私立 神戸薬科大学 2016年 第6問
次の問いに答えよ.

(1)次の極限値を求めると,$\displaystyle \lim_{x \to 1} \frac{x^2+x-2}{x^3-1}=[ト]$である.
(2)次の式を満たす関数$f(x)$と定数$a$を求めると,$f(x)=[ナ]$,$a=[ニ]$である.
\[ \int_x^a f(t) \, dt=x^2-2x-3 \]
明治大学 私立 明治大学 2016年 第1問
$(1)$~$(5)$において,$\nagamaruA$,$\nagamaruB$,$\nagamaruC$の値の大小関係を調べ,最大のものと最小のものを答えよ.

(1)$\{1,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6,\ 6,\ 6,\ 7\}$の,
$\nagamaruA$ 平均値 \qquad $\nagamaruB$ 中央値(メジアン) \quad $\nagamaruC$ 最頻値(モード)
(2)$\theta$が第$2$象限の角で,$\displaystyle \sin \theta=\frac{2}{3}$のとき,
$\displaystyle \nagamaruA \sin \left( \theta-\frac{\pi}{2} \right)$ \qquad $\nagamaruB \cos \theta$ \qquad $\nagamaruC \tan \theta$
(3)$\nagamaruA$ 半径$4$,面積$4 \pi$の扇形の弧の長さ
$\nagamaruB$ 半径$5$,中心角$\displaystyle \frac{\pi}{2}$の扇形の弧の長さ
$\nagamaruC$ 半径$6$,中心角${72}^\circ$の扇形の弧の長さ
(4)$2x^3+x^2-8x-3$を$x+2$で割ったときの商を$f(x)$としたとき,
$\nagamaruA f(0)$ \qquad $\nagamaruB f(1)$ \qquad $\nagamaruC f(2)$
(5)$f(x)=x^3-x^2-5x+5$のとき,
$\displaystyle \nagamaruA f \left( -\frac{2236}{1001} \right)$ \qquad $\displaystyle \nagamaruB f \left( \frac{98}{299} \right)$ \qquad $\displaystyle \nagamaruC f\left( \frac{502}{301} \right)$
明治大学 私立 明治大学 2016年 第2問
次の$[ ]$に適する数を入れよ.

(1)${48}^{30}$は$[ア][イ]$桁の数である.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$として計算せよ.
(2)放物線$y=x^2-7x+6$と直線$y=x-1$は$2$点$([ウ],\ [エ])$,$([オ],\ [カ])$(ただし,$[ウ]<[オ]$)で交わり,両者によって囲まれる部分の面積は$[キ][ク]$である.
(3)$\mathrm{A}$と$\mathrm{B}$が,あるゲームで対戦している.$\mathrm{A}$と$\mathrm{B}$の強さは互角で,$1$回の対戦で勝つ確率はいずれも$\displaystyle \frac{1}{2}$である.引き分けは,ないものとする.

(i) $5$回目の対戦が終わったところで,$\mathrm{A}$が$3$勝,$\mathrm{B}$が$2$勝している確率は$\displaystyle \frac{[ケ]}{[コ][サ]}$である.
(ii) $\mathrm{B}$が先に$3$勝する前に$\mathrm{A}$が先に$2$勝する確率は$\displaystyle \frac{[シ][ス]}{[セ][ソ]}$である.
明治大学 私立 明治大学 2016年 第4問
以下のように群に分けられた規則的な数列がある.ただし,第$n$群には$n$個の項が入るものとする.つまり,第$1$項が第$1$群,第$2$項と第$3$項が第$2$群,その後に続く$3$つの項が第$3$群,などとなる.この数列について,各問に答えよ.


$\displaystyle \frac{2}{1 \cdot 2} \;\bigg|\; \frac{3}{1 \cdot 2}, \frac{3}{ 2 \cdot 3} \;\bigg|\; \frac{4}{1 \cdot 2}, \frac{4}{ 2 \cdot 3}, \frac{4}{3 \cdot 4} \;\bigg|\; \frac{5}{1 \cdot 2}, \frac{5}{ 2 \cdot 3}, \frac{5}{3 \cdot 4}, \frac{5}{4 \cdot 5} \;\bigg|\; \frac{6}{1 \cdot 2},\ \cdots$
第$1$群 \qquad\!\!\! 第$2$群 \qquad\qquad\quad\!\!\! 第$3$群 \qquad\qquad\qquad\qquad\ 第$4$群


(1)第$20$項の値を求めよ.
(2)第$5$項と同じ値の項は次に第何項に現れるか.
(3)初項から第$n$群の最後の項までの項の総数を式で表せ.
(4)第$n$群に含まれる$k$番目の項を式で表せ.
(5)初項から第$30$群の最後の項までの中に,$5$より大きい項はいくつあるか.
(6)第$n$群に含まれる$n$個の項の総和を式で表せ.
大阪薬科大学 私立 大阪薬科大学 2016年 第3問
次の問いに答えなさい.

点$\mathrm{O}$を原点とする$xy$座標平面上に点$\mathrm{A}(2,\ 4)$と点$\mathrm{B}(5,\ 2)$,および直線$\ell$がある.

(1)$\ell$の方程式は$\displaystyle y=\frac{1}{2}(-x+1)$である.

(i) 点$\mathrm{P}$が$\ell$上の点であるとき,内積$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OP}}$の値を求めよ.
(ii) $\ell$上の$\mathrm{P}$に対し,$|\overrightarrow{\mathrm{OP}}|^2$のとり得る最小の値を求めよ.

(2)$a$を$1$以上の定数とする.$xy$座標平面上の点$\mathrm{Q}$が,線分$\mathrm{AQ}$の中点$\mathrm{M}$を用いて,
\[ a|\overrightarrow{\mathrm{AQ}}|^2=4|\overrightarrow{\mathrm{OM}}|^2+4|\overrightarrow{\mathrm{BM}}|^2 \]
を満たしながら動くとき,その$\mathrm{Q}$の軌跡を$C$とする.

(i) $C$が直線となるときの$a$の値を求めよ.
(ii) $a=1$のとき,$C$上の$\mathrm{Q}$に対し,$|\overrightarrow{\mathrm{OQ}}|^2$のとり得る最小の値を求めよ.
北里大学 私立 北里大学 2016年 第1問
次の$[ ]$にあてはまる答えを記せ.

(1)$a$と$\theta$を実数とし,$2$次方程式$x^2-\sqrt{7}ax+3a^3=0$の$2$つの解を$\sin \theta$,$\cos \theta$とする.このとき,$a$の値は$[ア]$または$[イ]$である.ただし,$[ア]<[イ]$とする.さらに,$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{4}$であれば,$\sin \theta=[ウ]$である.
(2)$x,\ y,\ z$を$0$以上の整数とする.このとき

(i) $x+y+z=9$を満たす$x,\ y,\ z$の組の総数は$[エ]$である.
(ii) $x+y+z \leqq 9$を満たす$x,\ y,\ z$の組の総数は$[オ]$である.
(iii) $x+y+z \leqq 9$を満たす$x,\ y,\ z$の組のうち,$x,\ y,\ z$がすべて相異なるものの総数は$[カ]$である.

(3)$a$を$0 \leqq a \leqq 1$を満たす定数とする.直線$y=1-x$と$x$軸,$y$軸で囲まれた図形を直線$y=a$の周りに$1$回転してできる回転体の体積を$V(a)$とする.このとき$V(a)$は,$\displaystyle 0 \leqq a<\frac{1}{2}$ならば$[キ]$,$\displaystyle \frac{1}{2} \leqq a \leqq 1$ならば$[ク]$と$a$を用いて表される.また,$V(a)$のとり得る値の範囲は$[ケ]$である.
(4)$1$辺の長さが$2$の正四面体$\mathrm{OABC}$がある.辺$\mathrm{OA}$の中点を$\mathrm{M}$,辺$\mathrm{OB}$の中点を$\mathrm{N}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.
このとき,$\cos \angle \mathrm{MCN}$の値は$[コ]$である.また,頂点$\mathrm{O}$から平面$\mathrm{MNC}$に下ろした垂線と平面$\mathrm{MNC}$の交点を$\mathrm{H}$とするとき,$\overrightarrow{\mathrm{OH}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表すと,$\overrightarrow{\mathrm{OH}}=[サ] \overrightarrow{a}+[シ] \overrightarrow{b}-[ス] \overrightarrow{c}$である.さらに,直線$\mathrm{OH}$と平面$\mathrm{ABC}$の交点を$\mathrm{F}$とするとき,$\displaystyle \frac{\mathrm{OH}}{\mathrm{HF}}$の値は$[セ]$である.
明治大学 私立 明治大学 2016年 第1問
次の各問の$[ ]$にあてはまる数を記入せよ.

(1)$3$次方程式$x^3-6x^2+9x+2-a=0$が異なる$2$つの実数解をもつときの$a$の値は,$[ア]$または$[イ]$である.ただし,$[ア]<[イ]$とする.
(2)(指定範囲外からの出題だったため,全員正解とした.)
(3)$\triangle \mathrm{ABC}$において,$\displaystyle \cos A=-\frac{1}{2},\ \cos B=\frac{11}{14},\ \cos C=\frac{13}{14},\ \mathrm{AB}=3$であるとき,$\mathrm{BC}=[ア]$である.
(4)方程式$a+b+c+5d=17$を満たす$a,\ b,\ c,\ d$の$0$以上の整数解の組の総数は$[ア][イ][ウ]$個である.
(5)$\displaystyle \sum_{k=1}^{20} \frac{1}{k(k+1)(k+2)}$の値は$\displaystyle \frac{[ア][イ][ウ]}{[エ][オ][カ]}$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。