タグ「分数」の検索結果

49ページ目:全4648問中481問~490問を表示)
同志社大学 私立 同志社大学 2016年 第2問
$n$を正整数とし,$e$を自然対数の底とするとき,次の問いに答えよ.

(1)$a,\ b$を定数として,次の関数$f(x) (x>0)$の導関数$f^\prime(x)$を求めよ.
\[ f(x)=x^{n+1} \{a \cos (\pi \log x)+b \sin (\pi \log x) \} \]
(2)次の定積分の値をそれぞれ求めよ.
\[ I_n=\int_1^e x^n \cos (\pi \log x) \, dx,\quad J_n=\int_1^e x^n \sin (\pi \log x) \, dx \]
(3)次の極限値をそれぞれ求めよ.
\[ \lim_{n \to \infty} \frac{I_{n+1}}{I_n},\quad \lim_{n \to \infty} \frac{J_{n+1}}{J_n},\quad \lim_{n \to \infty} \frac{J_n}{I_n} \]
同志社大学 私立 同志社大学 2016年 第4問
数列$\{a_n\}$を
\[ a_1=5,\quad a_{n+1}=\frac{a_n}{2}+\frac{6}{\sqrt{a_n}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
によって定める.$\displaystyle f(x)=\frac{x}{2}+\frac{6}{\sqrt{x}} (x>0)$として,次の問いに答えよ.

(1)閉区間$4 \leqq x \leqq 9$において,$f(x)$の最大値と最小値,導関数$f^\prime(x)$の最大値と最小値をそれぞれ求めよ.
(2)$4<a_n<9$を数学的帰納法を用いて示せ.
(3)$c=f(c)$を満たす正の実数$c$を求めよ.
(4)上の$(3)$で決定した$c$に対して,$\displaystyle 0<c-a_{n+1}<\frac{c-a_n}{2} (n=1,\ 2,\ 3,\ \cdots)$を示せ.
(5)極限値$\displaystyle \lim_{n \to \infty}a_n$を求めよ.
明治大学 私立 明治大学 2016年 第2問
次の設問の$[ ]$に適当な数を入れなさい.

ある種の電磁波は遮へい板を$1$枚通過するごとに電磁波の強さが$\displaystyle \frac{4}{5}$になる.この電磁波の強さを$\displaystyle \frac{1}{30}$以下にするためには,遮へい板が最低$[ ]$枚必要となる.ただし,$\log_{10}2=0.3010$,$\log_{10}3=0.4771$,$\log_{10}5=0.6990$とする.
慶應義塾大学 私立 慶應義塾大学 2016年 第6問
ある人が破産したとき,すなわち,借りているお金の一部分しか返すことができなくなったとき,その人の財産(現在残っているものをお金にしたもの)の総額$A$を$n$人の債権者(お金を貸した人)にどう分配するかについて考える.債権者には債権額(貸したお金の額)の少ない順に番号が振られており,第$i$番目の債権者の債権額を$B_i$とすると,$B_i<B_{i+1} (i=1,\ \cdots,\ n-1)$が成り立っている.また,$\displaystyle B=\sum_{i=1}^n B_i$としたとき,$A<B$である.以下では$A=B$のときを含めて,第$i$番目の債権者の分配額$X_i$を,$B_i$の状況に応じて,次のルールに従って決める.


\mon[ケース$1$:] $\displaystyle A \leqq \frac{n}{2}B_1$のときは,$\displaystyle X_i=\frac{1}{n}A (i=1,\ \cdots,\ n)$とする.
\mon[ケース$2$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B-\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \leqq A \leqq \frac{1}{2}B-\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
\displaystyle\frac{1}{2}B_k+\frac{1}{n-k} \left\{ A-\frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k) \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$3$:] $1 \leqq k \leqq n-1$に対して
\[ \frac{1}{2}B+\frac{1}{2} \sum_{j=k+1}^n (B_j-B_{k+1}) \leqq A \leqq \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_{k}) \]
のときは
\[ X_i=\left\{ \begin{array}{ll}
\displaystyle\frac{1}{2}B_i & (i=1,\ \cdots,\ k) \\
B_i-\displaystyle\frac{1}{2}B_k-\frac{1}{n-k} \left\{ \frac{1}{2}B+\frac{1}{2} \sum_{j=k}^n (B_j-B_k)-A \right\} & (i=k+1,\ \cdots,\ n)
\end{array} \right. \]
とする.
\mon[ケース$4$:] $\displaystyle B-\frac{n}{2}B_1 \leqq A$のときは,$\displaystyle X_i=B_i-\frac{1}{n}(B-A) (i=1,\ \cdots,\ n)$とする.


(1)$n=2,\ B_1=60,\ B_2=180$としたとき,$A$が
\[ [$85$][$86$][$87$] \leqq A \leqq [$88$][$89$][$90$] \]
の範囲ならば,$X_1=30$となる.また,$X_2$が$X_1$の$4$倍となるのは,$A$の値が$2$通りあり,小さい順に$[$91$][$92$][$93$]$と$[$94$][$95$][$96$]$の場合である.
(2)$n=3,\ B_1=60,\ B_2=90,\ B_3=180$としたとき,$A=100$ならば,$X_2=[$97$][$98$][$99$]$,$X_3=[$100$][$101$][$102$]$であり,$A=220$ならば,$X_2=[$103$][$104$][$105$]$,$X_3=[$106$][$107$][$108$]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)初項が$a_1$で公差が$d$である等差数列$\{a_n\}$について,$a_{27}=20$,$a_{37}=15$が成り立っている.このとき,$a_1=[ア]$であり,$d=[イ]$である.したがって$a_1+a_2+a_3+\cdots +a_n=[ウ]$となる.
(2)$2$曲線$y=4^x (x \geqq 0)$と$y=8^x (x \geqq 0)$と直線$x=1$に囲まれた部分を$D$とする.$D$の面積は$[エ]$であり,$D$を$x$軸のまわりに$1$回転してできる回転体の体積は$[オ]$であり,$D$を$y$軸のまわりに$1$回転してできる回転体の体積は$[カ]$である.
(3)双曲線
\[ C:\frac{x^2}{9}-\frac{y^2}{4}=1 \]
上の点$\displaystyle \mathrm{P} \left( \frac{3}{\cos \theta},\ 2 \tan \theta \right) (0<\theta<\frac{\pi}{2})$における接線$\ell$の方程式は$[キ]$であり,法線$m$の方程式は$[ク]$である.また,$m$と$x$軸の交点を$(X,\ 0)$とし$m$と$y$軸の交点を$(0,\ Y)$とすると,$X$の範囲は$[ケ]$であり,$Y$の範囲は$[コ]$である.
北里大学 私立 北里大学 2016年 第3問
双曲線$\displaystyle \frac{x^2}{2}-y^2=1$に対し,双曲線上の点$\mathrm{P}(a,\ b)$における接線を$\ell$とする.ただし,$a>0$とする.

(1)$\ell$の方程式が$\displaystyle \frac{ax}{2}-by=1$で与えられることを示せ.
(2)$\ell$に垂直な双曲線の接線$m$が引けるための$a$の条件を求めよ.
(3)$a$が$(2)$の条件を満たすとする.双曲線上の点$\mathrm{Q}(c,\ d)$における接線が$\ell$に垂直に交わるように点$\mathrm{Q}$を定める.ただし,$d>0$とする.$\mathrm{O}$を原点とするとき,$\triangle \mathrm{OPQ}$の面積を最小にする$a$の値を求めよ.
神戸薬科大学 私立 神戸薬科大学 2016年 第1問
次の問いに答えよ.

(1)$(x+2)(x+3)(x+4)(x+5)+1$を実数の範囲で因数分解すると$[ア]$である.
(2)$x^{2016}$を$x^2-1$で割った余りを求めると$[イ]$である.
(3)$\cos {28}^\circ+\cos {75}^\circ+\cos {150}^\circ+\cos {208}^\circ+\cos {255}^\circ$の値を求めると$[ウ]$である.
(4)$12707$と$12319$の最大公約数を求めると$[エ]$である.
(5)$2^x=5^y=10$のとき,$\displaystyle \frac{1}{x}+\frac{1}{y}$の値を求めると$[オ]$である.
(6)点$\mathrm{A}(-2,\ 0)$と点$\mathrm{B}(6,\ 0)$からの距離の比が$1:3$となる点$\mathrm{P}$の軌跡の方程式を求めると$[カ]$である.
神戸薬科大学 私立 神戸薬科大学 2016年 第2問
$2$次関数$y=4x^2-16x-9$において,最小値は$x=[キ]$のとき,$y=[ク]$である.また,$y \leqq 0$となる$x$の範囲を求めると$[ケ]$である.

この$2$次関数のグラフを$x$軸方向に$\displaystyle \frac{3}{2}$,$y$軸方向に$a$だけ平行移動すると点$(1,\ 7)$を通った.このとき,$a=[コ]$である.
同志社大学 私立 同志社大学 2016年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)$a$を実数とする.$3$辺の長さがそれぞれ$a-1,\ a,\ a+1$となる三角形が存在するとき,$a$の値の範囲は$[ア]$である.この三角形が鈍角三角形となる$a$の値の範囲は$[イ]$である.$a=[ウ]$のとき,$1$つの内角が$\displaystyle \frac{2\pi}{3}$となる三角形である.このとき三角形の外接円の半径は$[エ]$であり,内接円の半径は$[オ]$である.
(2)$k$を実数とし,$f(x)=x^4+kx^2+1$とおく.曲線$C_1:y=f(x)$の点$\mathrm{P}(1,\ f(1))$における接線$\ell$の方程式は$y=[カ]$である.直線$\ell$は,$k$の値によらず定点$([キ])$を通る.$k$の値の範囲が$[ク]$のとき,曲線$C_1$と直線$\ell$との共有点の個数は$3$となる.このとき,この$3$つの共有点を通る$3$次関数で定義される曲線のうち,$x^3$の係数が$1$である曲線$C_2$は$y=[ケ]$で表される.$k=-7$のとき,$\ell$と$C_2$で囲まれた$2$つの部分の面積の差の絶対値は$[コ]$である.
同志社大学 私立 同志社大学 2016年 第2問
数列$\{a_n\}$を漸化式
\[ a_1=-1,\quad a_{n+1}=a_n-3n+\frac{1}{2^{n-1}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.第$n$項$a_n$に対して,$a_n$を超えない最大の整数を$b_n$,また$c_n$を$c_n=a_n-b_n$より定める.ここで実数$x$に対し$x$を超えない最大の整数とは,$N \leqq x<N+1$を満たす整数$N$とする.このとき次の問いに答えよ.

(1)$a_2,\ a_3,\ b_2,\ b_3$の値をそれぞれ求めよ.
(2)数列$\{a_n\}$の一般項$a_n$を$n$を用いて表せ.
(3)$n \geqq 3$のとき,数列$\{b_n\}$,$\{c_n\}$の一般項をそれぞれ$n$を用いて表せ.
(4)正の整数$n$に対して,数列$\{d_n\}$を$\displaystyle d_n=\sum_{k=1}^n b_kc_k$で定める.数列$\{d_n\}$の第$n$項を$n$を用いて表せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。