タグ「分数」の検索結果

456ページ目:全4648問中4551問~4560問を表示)
日本女子大学 私立 日本女子大学 2010年 第3問
$\displaystyle a=\frac{\sqrt{3}}{6},\ b=\tan \frac{\pi}{12}$とするとき,次の問いに答えよ.

(1)$x$を実数(ただし$\displaystyle 0 \leqq x<\frac{\pi}{4}$)とするとき,$\tan 2x$を$\tan x$の式で表せ.
(2)$a$と$b$の大小を,理由をつけて答えよ.
星薬科大学 私立 星薬科大学 2010年 第4問
次の問いに答えよ.

(1)関数$\displaystyle f(x)=\frac{10^x-10^{-x}}{10^x+10^{-x}}$が$\displaystyle f(a)=\frac{1}{2},\ f(b)=\frac{1}{5}$を満たすとき,
\[ a=\frac{1}{2} \log_{10} [ ],\quad b=\frac{1}{2}(\log_{10} [ ]-\log_{10} [ ]) \]
であり,$f(a+b)$の値は$\displaystyle \frac{[ ]}{[ ]}$である.
(2)関数$f(x)=2^{-3x}-9 \cdot 2^{-2x}+24 \cdot 2^{-x}-20$は$\displaystyle -2 \leqq x \leqq -\frac{1}{2}$において最小値$-[ ]$,最大値$[ ]$をとる.
星薬科大学 私立 星薬科大学 2010年 第5問
放物線$y=x^2+1$を$C_1$,放物線$y=-x^2+6x-8$を$C_2$として次の問いに答えよ.

(1)点$\displaystyle \left( \frac{[ ]}{[ ]},\ [ ] \right)$に関して,$C_1$と$C_2$は対称である.
(2)$C_1$と$C_2$の両方に接する$2$つの接線のうち,$x$軸と交わらない方を$\ell_1$,$x$軸と交わる方を$\ell_2$とすると,$\ell_1$の方程式は$y=[ ]$,$\ell_2$の方程式は$y=[ ] x-[ ]$である.
(3)$C_1$と$\ell_1$および$\ell_2$とで囲まれた部分の面積と,$C_2$と$\ell_1$および$\ell_2$とで囲まれた部分の面積の和は$\displaystyle \frac{[ ]}{[ ]}$である.
星薬科大学 私立 星薬科大学 2010年 第6問
数列$\{a_n\},\ \{b_n\} (n=1,\ 2,\ 3,\ \cdots)$を

$\displaystyle \{a_n\}:\frac{4}{1 \cdot 2},\ \frac{4}{2 \cdot 3},\ \frac{4}{3 \cdot 4},\ \frac{4}{4 \cdot 5},\ \cdots$

$\displaystyle \{b_n\}:\frac{9}{1 \cdot 2 \cdot 3},\ \frac{16}{2 \cdot 3 \cdot 4},\ \frac{23}{3 \cdot 4 \cdot 5},\ \frac{30}{4 \cdot 5 \cdot 6},\ \cdots$

として次の問いに答えよ.

(1)各数列の一般項は$\displaystyle a_n=\frac{4}{n(n+1)},\ b_n=\frac{[ ] n+[ ]}{n(n+1)(n+2)}$である.
(2)$\displaystyle S_n=\sum_{k=1}^n a_k,\ T_n=\sum_{k=1}^n b_k$とすると,
\[ S_n=\frac{[ ] n}{n+1},\quad T_n=\frac{[ ] n^2+[ ] n}{(n+1)(n+2)} \]
である.
(3)$\displaystyle S_n-T_n<\frac{1}{4}$を満たす自然数$n$の最小値は$[ ]$である.
東京電機大学 私立 東京電機大学 2010年 第1問
次の各問に答えよ.

(1)$3$つの数$a,\ a+6,\ 2a+17$がこの順に等比数列となるような$a$の値をすべて求めよ.
(2)不等式$\displaystyle \left( \frac{1}{2} \right)^{1-x^2}<(2 \sqrt{2})^{x-1}$をみたす$x$の範囲を求めよ.
(3)方程式$\sin^2 x+2 \cos^2 x+3 \cos x+1=0 (0 \leqq x<2\pi)$をみたす$x$を求めよ.
(4)無限級数$\displaystyle \frac{1}{2}+\frac{5}{3}+\frac{1}{2^2}+\frac{5}{3^2}+\frac{1}{2^3}+\frac{5}{3^3}+\cdots$の和を求めよ.
(5)定積分$\displaystyle \int_0^{\frac{\pi}{2}} (2x+1) \sin 4x \, dx$を求めよ.
東京電機大学 私立 東京電機大学 2010年 第3問
正の定数$k$に対して,曲線$\displaystyle C:y=\frac{x^3}{3}$の接線で傾きが$k^2$のものを$\ell_1,\ \ell_2$とする.$C$と$\ell_1,\ \ell_2$の接点$\mathrm{P}$,$\mathrm{Q}$はそれぞれ,第$1$,第$3$象限にあるとする.また,$C$と$\ell_1$との共有点のうち,$\mathrm{P}$でないものを$\mathrm{R}$とする.次の問に答えよ.

(1)$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の座標を$k$で表せ.
(2)線分$\mathrm{QR}$と$C$で囲まれた図形の面積$T$を$k$で表せ.
(3)$(2)$で求めた$T$が,$T<1$をみたすような$k$の値の範囲を求めよ.
東京電機大学 私立 東京電機大学 2010年 第4問
次の各問に答えよ.

(1)$3$つの数$a,\ a+6,\ 2a+17$がこの順に等比数列となるような$a$の値をすべて求めよ.
(2)不等式$\displaystyle \left( \frac{1}{2} \right)^{1-x^2}<(2 \sqrt{2})^{x-1}$をみたす$x$の範囲を求めよ.
(3)方程式$\sin^2 x+2 \cos^2 x+3 \cos x+1=0 (0 \leqq x<2\pi)$をみたす$x$を求めよ.
(4)曲線$y=x^3-3x^2+k$が$x$軸と異なる$3$点で交わるような定数$k$の値の範囲を求めよ.
(5)定積分$\displaystyle \int_{-2}^2 |x-1|(3x+1) \, dx$を求めよ.
津田塾大学 私立 津田塾大学 2010年 第4問
次の問いに答えよ.

(1)$n$を自然数とする.次数が$n$の多項式$P(x)=a_0+a_1x+\cdots +a_nx^n$について$a_1=P^\prime(0)$であることを確かめよ.ただし,$P^\prime(0)$は$P(x)$の$x=0$における微分係数である.
(2)自然数$n$に対して,$f_n(x)=(x+1)(x+2) \cdots (x+n)$で与えられる$n$次多項式$f_n(x)$の$1$次の係数を$c_n$とする.$f_{n+1}(x)=(x+n+1)f_n(x)$を用いて,$c_{n+1}=n!+(n+1)c_n$が成り立つことを示せ.また,それを用いて,$\displaystyle c_n=n! \left( 1+\frac{1}{2}+\frac{1}{3}+\cdots +\frac{1}{n} \right)$であることを示せ.
津田塾大学 私立 津田塾大学 2010年 第3問
放物線$y=x^2$を$C$とし,$C$上の$2$点$\mathrm{P}(a,\ a^2)$,$\mathrm{Q}(b,\ b^2) (a<b)$を考える.$C$と線分$\mathrm{PQ}$で囲まれた部分の面積を$S$とし,$\mathrm{PQ}$の中点$\mathrm{M}$から$x$軸に下ろした垂線と$C$との交点を$\mathrm{H}$とする.次の問いに答えよ.

(1)$\triangle \mathrm{MQH}$の面積を求めよ.
(2)$\triangle \mathrm{PQH}$の面積を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
津田塾大学 私立 津田塾大学 2010年 第1問
次の問に答えよ.

(1)$\triangle \mathrm{ABC}$の辺$\mathrm{BC}$を$t:(1-t)$に内分する点を$\mathrm{D}$とするとき,
\[ (1-t)\mathrm{AB}^2+t \mathrm{AC}^2=\mathrm{AD}^2+\frac{1-t}{t} \mathrm{BD}^2 \]
が成り立つことを示せ.ただし$0<t<1$とする.
(2)$f(x)=x^3+ax^2+bx$とする.ただし,$a,\ b$は実数で$a>0$とする.方程式$f(x)=0$がただ$1$つの実数解を持ち,関数$y=f(x)$が異なる$2$点$x=\alpha$,$x=\beta$で極値をとるとき,$\alpha,\ \beta$はいずれも負であることを示せ.
(3)連立不等式
\[ \left\{ \begin{array}{l}
y \geqq x^2-1 \\
y \leqq -x^2+3x+1 \\
x \geqq 0
\end{array} \right. \]
の表す領域の面積を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。