「分数」について
タグ「分数」の検索結果
(37ページ目:全4648問中361問~370問を表示) 私立 慶應義塾大学 2016年 第1問
中心の座標が$(1,\ 1)$,半径が$2 \sqrt{2}$である座標平面上の円を$C$とする.$C$上の点$\mathrm{P}(x,\ y)$に対して$t=x+y$とおく.
(1)$\mathrm{P}(x,\ y)$が$C$上を動くとき$t$が取り得る値の範囲は$[$1$][$2$] \leqq t \leqq [$3$][$4$]$である.特に$t=0$のとき,$x^2+y^2=[$5$]$が成り立つ.
(2)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$xy$の値は$t=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$]}{[$9$]}$をとる.
(3)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$x^3+y^3$の値は$t=[$10$]+\sqrt{[$11$][$12$]}$のとき最大になる.
(1)$\mathrm{P}(x,\ y)$が$C$上を動くとき$t$が取り得る値の範囲は$[$1$][$2$] \leqq t \leqq [$3$][$4$]$である.特に$t=0$のとき,$x^2+y^2=[$5$]$が成り立つ.
(2)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$xy$の値は$t=[$6$]$のとき最小値$\displaystyle \frac{[$7$][$8$]}{[$9$]}$をとる.
(3)$\mathrm{P}(x,\ y)$が$C$上を動くとき,$x^3+y^3$の値は$t=[$10$]+\sqrt{[$11$][$12$]}$のとき最大になる.
私立 慶應義塾大学 2016年 第4問
$t$を正の実数とし,$x$の$2$次方程式
\[ x^2-2 \{(\log_2 t)^2+1\}x+6(\log_2 t)^2+1=0 \]
を考える.
(1)上の$2$次方程式の実数解が存在しない$t$の範囲を求めよ.
上の方程式が実数解を持つ$t$に対して,実数解がただ$1$つのときはその値を$f(t)$と定め,実数解が$2$つあるときは小さいほうの値を$f(t)$と定める.
(2)上の$2$次方程式の実数解がただ$1$つ存在する$t$の集合を$A$とする.$t \in A$のとき$f(t)$の最小値と最大値を求めよ.
(3)$t$が$\displaystyle 1 \leqq \log_4 t \leqq \frac{3}{2}$を満たす範囲を動くとき,$f(t)$の最小値を求めよ.
\[ x^2-2 \{(\log_2 t)^2+1\}x+6(\log_2 t)^2+1=0 \]
を考える.
(1)上の$2$次方程式の実数解が存在しない$t$の範囲を求めよ.
上の方程式が実数解を持つ$t$に対して,実数解がただ$1$つのときはその値を$f(t)$と定め,実数解が$2$つあるときは小さいほうの値を$f(t)$と定める.
(2)上の$2$次方程式の実数解がただ$1$つ存在する$t$の集合を$A$とする.$t \in A$のとき$f(t)$の最小値と最大値を求めよ.
(3)$t$が$\displaystyle 1 \leqq \log_4 t \leqq \frac{3}{2}$を満たす範囲を動くとき,$f(t)$の最小値を求めよ.
私立 慶應義塾大学 2016年 第6問
$a$を$0$でない実数とする.等式
\[ f(x)=\frac{3}{a}x^2-\frac{1}{a}x+\left\{ \int_0^2 f(t) \, dt \right\}^2 \]
を満たす関数$f(x)$を考える.
(1)$a=-1$のとき,この等式を満たす$f(x)$は$2$つある.それらを求めよ.
(2)この等式を満たす$f(x)$がただ$1$つであるとき,$a$の値を求めよ.
(3)$b$を正の実数とする.定積分$\displaystyle \int_0^b \{f(x)-f(b)\} \, dx$の値が$a$によらないとき,$b$の値を求めよ.
(4)$a$と$b$を,それぞれ$(2)$と$(3)$で求めた値とするとき,定積分$\displaystyle \int_b^2 f(x) \, dx$を求めよ.
\[ f(x)=\frac{3}{a}x^2-\frac{1}{a}x+\left\{ \int_0^2 f(t) \, dt \right\}^2 \]
を満たす関数$f(x)$を考える.
(1)$a=-1$のとき,この等式を満たす$f(x)$は$2$つある.それらを求めよ.
(2)この等式を満たす$f(x)$がただ$1$つであるとき,$a$の値を求めよ.
(3)$b$を正の実数とする.定積分$\displaystyle \int_0^b \{f(x)-f(b)\} \, dx$の値が$a$によらないとき,$b$の値を求めよ.
(4)$a$と$b$を,それぞれ$(2)$と$(3)$で求めた値とするとき,定積分$\displaystyle \int_b^2 f(x) \, dx$を求めよ.
私立 慶應義塾大学 2016年 第4問
$i$を虚数単位とする.次の事実がある.
\begin{waku}[事実$\mathrm{F}$]
$a,\ b$を互いに素な正の整数とする.このとき,
\[ \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k=\cos \frac{2}{b} \pi+i \sin \frac{2}{b} \pi \]
となる整数$k$が存在する.
\end{waku}
(1)等式
\[ \left( \cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi \right)^k=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi \]
を満たす最小の正の整数$k$は$[ツ]$である.
(2)$a,\ b$を互いに素な正の整数とし,集合$P$を
\[ P=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k \text{と表される複素数} \right\} \]
で定める.事実$\mathrm{F}$を考慮すると,集合$P$の要素の個数$n(P)$は$[テ]$である.
(3)事実$\mathrm{F}$を証明しなさい.
(4)$a_1,\ b_1$を互いに素な正の整数とし,$a_2,\ b_2$も互いに素な正の整数とする.集合$Q_1$と$Q_2$を
$\displaystyle Q_1=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_1}{b_1} \pi+i \sin \frac{2a_1}{b_1} \pi \right)^k \text{と表される複素数} \right\}$
$\displaystyle Q_2=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_2}{b_2} \pi+i \sin \frac{2a_2}{b_2} \pi \right)^k \text{と表される複素数} \right\}$
で定め,集合$R$を
\[ R=\{z \;\bigg|\; \text{$z$は集合$Q_1$の要素と集合$Q_2$の要素の積で表される複素数}\} \]
で定める.$b_1$と$b_2$が互いに素ならば,集合$R$の要素の個数$n(R)$は$[ト]$である.$b_1$と$b_2$が互いに素でないとき,それらの最大公約数を$d$とすれば,集合$R$の要素の個数$n(R)$は$[ナ]$である.
\begin{waku}[事実$\mathrm{F}$]
$a,\ b$を互いに素な正の整数とする.このとき,
\[ \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k=\cos \frac{2}{b} \pi+i \sin \frac{2}{b} \pi \]
となる整数$k$が存在する.
\end{waku}
(1)等式
\[ \left( \cos \frac{4}{5} \pi+i \sin \frac{4}{5} \pi \right)^k=\cos \frac{2}{5} \pi+i \sin \frac{2}{5} \pi \]
を満たす最小の正の整数$k$は$[ツ]$である.
(2)$a,\ b$を互いに素な正の整数とし,集合$P$を
\[ P=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a}{b} \pi+i \sin \frac{2a}{b} \pi \right)^k \text{と表される複素数} \right\} \]
で定める.事実$\mathrm{F}$を考慮すると,集合$P$の要素の個数$n(P)$は$[テ]$である.
(3)事実$\mathrm{F}$を証明しなさい.
(4)$a_1,\ b_1$を互いに素な正の整数とし,$a_2,\ b_2$も互いに素な正の整数とする.集合$Q_1$と$Q_2$を
$\displaystyle Q_1=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_1}{b_1} \pi+i \sin \frac{2a_1}{b_1} \pi \right)^k \text{と表される複素数} \right\}$
$\displaystyle Q_2=\left\{ z \;\bigg|\; \text{$z$は整数$k$を用いて} \left( \cos \frac{2a_2}{b_2} \pi+i \sin \frac{2a_2}{b_2} \pi \right)^k \text{と表される複素数} \right\}$
で定め,集合$R$を
\[ R=\{z \;\bigg|\; \text{$z$は集合$Q_1$の要素と集合$Q_2$の要素の積で表される複素数}\} \]
で定める.$b_1$と$b_2$が互いに素ならば,集合$R$の要素の個数$n(R)$は$[ト]$である.$b_1$と$b_2$が互いに素でないとき,それらの最大公約数を$d$とすれば,集合$R$の要素の個数$n(R)$は$[ナ]$である.
私立 慶應義塾大学 2016年 第2問
$a$を正の実数,$b,\ c$を実数とする.$f(x)=ax^2+bx+c$とし,$f^\prime(x)$を$f(x)$の導関数とする.
(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
(1)放物線$y=f(x)$と直線$y=f^\prime(x)$が接するための必要十分条件は
\[ b^2=[ウ] \qquad \cdots\cdots(\mathrm{A}) \]
である.
(2)条件$(\mathrm{A})$が成り立つとき,その接点の座標は
\[ \left( [$4$]-\frac{b}{[$5$]a},\ [$6$]a \right) \]
である.このとき,直線$y=f^\prime(x)$は放物線$y=-f(x)$とも接し,その接点$\mathrm{P}$の座標は
\[ \left( [$7$][$8$]-\frac{b}{[$9$]a},\ [$10$][$11$]a \right) \]
である.
(3)直線$y=f^\prime(x)$が原点を中心とする半径$\sqrt{2}$の円$\mathrm{O}$と接するための必要十分条件は
\[ b^2=[エ] \qquad \cdots\cdots(\mathrm{B}) \]
である.この条件が成り立つとき,その接点を$\mathrm{Q}$とする.
(4)条件$(\mathrm{A}),\ (\mathrm{B})$が成り立ち,さらに点$\mathrm{P}$が点$\mathrm{Q}$と一致するのは,
\[ a=\frac{[$12$]}{[$13$]},\quad b=[$14$][$15$],\quad c=\frac{[$16$]}{[$17$]} \]
のときである.このとき,円$\mathrm{O}$は放物線$y=f(x)$とただ$1$つの共有点$([$18$],\ [$19$])$をもち,放物線$y=f(x)$,直線$y=f^\prime(x)$および円$\mathrm{O}$で囲まれた図形の面積は
\[ \frac{[$20$]}{[$21$]}-\frac{[$22$]}{[$23$]} \pi \]
である.
私立 慶應義塾大学 2016年 第3問
球面$S:x^2-8x+y^2-4y+z^2+6z+20=0$は点$\mathrm{A}([$24$],\ [$25$],\ [$26$])$で$xy$平面と接し,球面$S$と$zx$平面との交わりは中心$\mathrm{B}([$27$],\ [$28$],\ [$29$][$30$])$,半径$\sqrt{[$31$]}$の円である.
球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
球面$S$の中心を$\mathrm{C}$,線分$\mathrm{AB}$を$\sqrt{3}:2$に外分する点を$\mathrm{P}$とすると,$\mathrm{P}$の座標は
\[ \left( [$32$],\ [$33$]+[$34$] \sqrt{[$35$]},\ [$36$]+[$37$] \sqrt{[$38$]} \right) \]
であり,$\displaystyle \angle \mathrm{ACP}=\frac{[$39$]}{[$40$]} \pi$(ただし$0 \leqq \angle \mathrm{ACP} \leqq \pi$)である.また,三角形$\mathrm{BPC}$の辺および内部が球面$S$と交わってできる図形は,長さ$\displaystyle \frac{[$41$]}{[$42$]} \pi$の円弧である.
私立 慶應義塾大学 2016年 第4問
$3$つの袋$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$がある.袋$\mathrm{A}$には,$1$から$7$までの番号が書かれた玉がそれぞれ$2$個ずつ,計$14$個入っている.また,袋$\mathrm{B}$,袋$\mathrm{C}$には何も入っていない.以下,番号$i$が書かれた玉を「玉$i$」と呼ぶことにする.
袋$\mathrm{A}$から無作為に玉を$1$個取り出して袋$\mathrm{B}$に入れる.ここで袋$\mathrm{B}$に入れられた玉を玉$i$とするとき,玉$i-1$,玉$i$,玉$i+1$のうち袋$\mathrm{A}$に入っているものをそれぞれ$1$個ずつ取り出して袋$\mathrm{C}$に入れる.この一連の操作を繰り返す.
例えば,$1$回目の操作の最初に玉$7$が袋$\mathrm{B}$に入れられたとする.このとき,袋$\mathrm{A}$には玉$6$と玉$7$は入っているが,玉$8$は入っていないので,玉$6$と玉$7$が$1$個ずつ袋$\mathrm{A}$から袋$\mathrm{C}$に移される.以上で$1$回目の操作が終わり,袋$\mathrm{A}$に玉$1,\ 1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4,\ 5,\ 5,\ 6$の計$11$個が入った状態で$2$回目の操作を始める.
(1)$1$回目の操作で玉$4$が袋$\mathrm{B}$に入れられたとき,$2$回目の操作で玉$5$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$43$]}{[$44$][$45$]}$である.
(2)$1$回目の操作で玉$2$が袋$\mathrm{B}$に入れられ,かつ$2$回目の操作で玉$1$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$46$]}{[$47$][$48$]}$である.
$1 \leqq i<j \leqq 7$を満たす整数$i,\ j$に対し,$2$回の操作を行った後に袋$\mathrm{B}$に玉$i$と玉$j$が入っている事象を$B_{i,j}$とし,事象$B_{i,j}$の確率を$P(B_{i,j})$で表す.
(3)$\displaystyle P(B_{1,2})=\frac{1}{7} \times \frac{[$49$]}{11}+\frac{1}{7} \times \frac{[$50$]}{10}=\frac{[$51$]}{110}$である.同様に,
$\displaystyle P(B_{1,3})=\frac{[$52$]}{[$53$][$54$]},\quad P(B_{1,7})=\frac{[$55$]}{[$56$][$57$]},$
$\displaystyle P(B_{2,3})=\frac{[$58$]}{[$59$][$60$]},\quad P(B_{2,4})=\frac{[$61$]}{[$62$][$63$]}$
である.
(4)$\comb{7}{2}$個の事象$B_{1,2},\ B_{1,3},\ \cdots,\ B_{6,7}$のうち,起こる確率が$P(B_{1,2})$であるものは$[$64$]$個,$P(B_{1,3})$であるものは$[$65$]$個,$P(B_{1,7})$であるものは$[$66$]$個,$P(B_{2,3})$であるものは$[$67$]$個,$P(B_{2,4})$であるものは$[$68$]$個である.
(5)$3$回の操作の後,袋$\mathrm{B}$に入っている玉の番号が全て偶数となる確率は$\displaystyle \frac{[$69$]}{[$70$][$71$]}$である.
袋$\mathrm{A}$から無作為に玉を$1$個取り出して袋$\mathrm{B}$に入れる.ここで袋$\mathrm{B}$に入れられた玉を玉$i$とするとき,玉$i-1$,玉$i$,玉$i+1$のうち袋$\mathrm{A}$に入っているものをそれぞれ$1$個ずつ取り出して袋$\mathrm{C}$に入れる.この一連の操作を繰り返す.
例えば,$1$回目の操作の最初に玉$7$が袋$\mathrm{B}$に入れられたとする.このとき,袋$\mathrm{A}$には玉$6$と玉$7$は入っているが,玉$8$は入っていないので,玉$6$と玉$7$が$1$個ずつ袋$\mathrm{A}$から袋$\mathrm{C}$に移される.以上で$1$回目の操作が終わり,袋$\mathrm{A}$に玉$1,\ 1,\ 2,\ 2,\ 3,\ 3,\ 4,\ 4,\ 5,\ 5,\ 6$の計$11$個が入った状態で$2$回目の操作を始める.
(1)$1$回目の操作で玉$4$が袋$\mathrm{B}$に入れられたとき,$2$回目の操作で玉$5$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$43$]}{[$44$][$45$]}$である.
(2)$1$回目の操作で玉$2$が袋$\mathrm{B}$に入れられ,かつ$2$回目の操作で玉$1$が袋$\mathrm{B}$に入れられる確率は$\displaystyle \frac{[$46$]}{[$47$][$48$]}$である.
$1 \leqq i<j \leqq 7$を満たす整数$i,\ j$に対し,$2$回の操作を行った後に袋$\mathrm{B}$に玉$i$と玉$j$が入っている事象を$B_{i,j}$とし,事象$B_{i,j}$の確率を$P(B_{i,j})$で表す.
(3)$\displaystyle P(B_{1,2})=\frac{1}{7} \times \frac{[$49$]}{11}+\frac{1}{7} \times \frac{[$50$]}{10}=\frac{[$51$]}{110}$である.同様に,
$\displaystyle P(B_{1,3})=\frac{[$52$]}{[$53$][$54$]},\quad P(B_{1,7})=\frac{[$55$]}{[$56$][$57$]},$
$\displaystyle P(B_{2,3})=\frac{[$58$]}{[$59$][$60$]},\quad P(B_{2,4})=\frac{[$61$]}{[$62$][$63$]}$
である.
(4)$\comb{7}{2}$個の事象$B_{1,2},\ B_{1,3},\ \cdots,\ B_{6,7}$のうち,起こる確率が$P(B_{1,2})$であるものは$[$64$]$個,$P(B_{1,3})$であるものは$[$65$]$個,$P(B_{1,7})$であるものは$[$66$]$個,$P(B_{2,3})$であるものは$[$67$]$個,$P(B_{2,4})$であるものは$[$68$]$個である.
(5)$3$回の操作の後,袋$\mathrm{B}$に入っている玉の番号が全て偶数となる確率は$\displaystyle \frac{[$69$]}{[$70$][$71$]}$である.
私立 慶應義塾大学 2016年 第2問
以下の条件で定められる数列$\{a_n\}$がある.
\[ a_1=\frac{1}{10},\quad a_{n+1}=\frac{1}{100}a_n+\frac{1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]
(1)$\{a_n\}$の階差数列$\{b_n\}$を$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定める.$\{b_n\}$は等比数列で,初項を$\displaystyle \frac{1}{{10}^p}$,公比を$\displaystyle \frac{1}{{10}^q}$とおくと,$p=[$13$]$,$q=[$14$]$となる.ゆえに,$\{b_n\}$の第$n$項を
\[ b_n=\frac{1}{{10}^{rn+s}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと,$r=[$15$]$,$s=[$16$]$となる.さらに,$\{a_n\}$の第$n$項は,
\[ a_n=a_1+\sum_{k=[$17$]}^{n+[$18$][$19$]} b_k=\frac{\displaystyle\frac{1}{{10}^t} \left( 1-\frac{1}{{10}^{un}} \right)}{1-\displaystyle\frac{1}{{10}^v}} \quad (n=2,\ 3,\ 4,\ \cdots) \]
と求められる.ここで,$t=[$20$]$,$u=[$21$]$,$v=[$22$]$である.
(2)$\displaystyle S_n=\sum_{k=1}^n \frac{1}{{10}^{2k} a_k a_{k+1}} \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.関係式
\[ \frac{b_k}{a_k a_{k+1}}=\frac{[$23$][$24$]}{a_k}+\frac{[$25$][$26$]}{a_{k+1}} \quad (k=1,\ 2,\ 3,\ \cdots) \]
を用いて計算すると,
\[ S_n=\frac{{10}^w \left( 1-\displaystyle\frac{1}{{10}^{xn}} \right)}{1-\displaystyle\frac{1}{{10}^{yn+z}}} \]
となる.ここで,$w=[$27$]$,$x=[$28$]$,$y=[$29$]$,$z=[$30$]$である.
(3)$({100}^{n+1}-1)S_n$は$[$31$]n+[$32$][$33$]$桁の整数になる.
\[ a_1=\frac{1}{10},\quad a_{n+1}=\frac{1}{100}a_n+\frac{1}{10} \quad (n=1,\ 2,\ 3,\ \cdots) \]
(1)$\{a_n\}$の階差数列$\{b_n\}$を$b_n=a_{n+1}-a_n (n=1,\ 2,\ 3,\ \cdots)$で定める.$\{b_n\}$は等比数列で,初項を$\displaystyle \frac{1}{{10}^p}$,公比を$\displaystyle \frac{1}{{10}^q}$とおくと,$p=[$13$]$,$q=[$14$]$となる.ゆえに,$\{b_n\}$の第$n$項を
\[ b_n=\frac{1}{{10}^{rn+s}} \quad (n=1,\ 2,\ 3,\ \cdots) \]
とおくと,$r=[$15$]$,$s=[$16$]$となる.さらに,$\{a_n\}$の第$n$項は,
\[ a_n=a_1+\sum_{k=[$17$]}^{n+[$18$][$19$]} b_k=\frac{\displaystyle\frac{1}{{10}^t} \left( 1-\frac{1}{{10}^{un}} \right)}{1-\displaystyle\frac{1}{{10}^v}} \quad (n=2,\ 3,\ 4,\ \cdots) \]
と求められる.ここで,$t=[$20$]$,$u=[$21$]$,$v=[$22$]$である.
(2)$\displaystyle S_n=\sum_{k=1}^n \frac{1}{{10}^{2k} a_k a_{k+1}} \quad (n=1,\ 2,\ 3,\ \cdots)$とおく.関係式
\[ \frac{b_k}{a_k a_{k+1}}=\frac{[$23$][$24$]}{a_k}+\frac{[$25$][$26$]}{a_{k+1}} \quad (k=1,\ 2,\ 3,\ \cdots) \]
を用いて計算すると,
\[ S_n=\frac{{10}^w \left( 1-\displaystyle\frac{1}{{10}^{xn}} \right)}{1-\displaystyle\frac{1}{{10}^{yn+z}}} \]
となる.ここで,$w=[$27$]$,$x=[$28$]$,$y=[$29$]$,$z=[$30$]$である.
(3)$({100}^{n+1}-1)S_n$は$[$31$]n+[$32$][$33$]$桁の整数になる.
私立 早稲田大学 2016年 第2問
正方形$\mathrm{ABCD}$を底面,点$\mathrm{P}$を頂点とする正四角錐$\mathrm{PABCD}$に内接する球について考える.ただし,正四角錐とは,頂点と底面の正方形の中心を結ぶ直線が底面と垂直になる角錐である.線分$\mathrm{AB}$の中点を$\mathrm{M}$とし,線分$\mathrm{AM}$および線分$\mathrm{PM}$の長さをそれぞれ$a,\ b$とする.次の問に答えよ.
(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
(1)内接する球の半径を$a,\ b$を用いて表せ.
(2)$\displaystyle x=\frac{b}{a}$と定めるとき,$\displaystyle \frac{\text{内接する球の表面積}}{\text{正四角錐$\mathrm{PABCD}$の表面積}}$を$x$で表わし,その最大値を求めよ.
(3)$(2)$で最大値をとるときの正四角錐$\mathrm{PABCD}$の体積を$a$を用いて表せ.
私立 早稲田大学 2016年 第2問
点$\mathrm{F}(0,\ 1)$を通り,直線$y=-1$に接する円の中心が描く軌跡を曲線$C$とする.このとき,曲線$C$を表す方程式は
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.
\[ y=\frac{1}{[ウ]}x^2 \]
となる.また,曲線$C$上に$x$座標が正である点$\mathrm{P}$をとる.線分$\mathrm{FP}$の長さが$4$となるとき,曲線$C$の点$\mathrm{P}$における接線と曲線$C$および$y$軸とで囲まれる図形の面積は$[エ] \sqrt{[オ]}$となる.