タグ「分数」の検索結果

287ページ目:全4648問中2861問~2870問を表示)
名古屋市立大学 公立 名古屋市立大学 2013年 第4問
原点を$\mathrm{O}$とする$xyz$空間内に$1$辺の長さが$1$の正四面体$\mathrm{OPQR}$がある.点$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$を通り$z$軸に平行な$3$直線と$xy$平面との交点をそれぞれ$\mathrm{P}^\prime$,$\mathrm{Q}^\prime$,$\mathrm{R}^\prime$とするとき,次の問いに答えよ.

(1)$\triangle \mathrm{PQR}$,$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の面積をそれぞれ$S$,$S_1$とする.$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$の$3$点を通る平面と$xy$平面のなす角を$\theta$とするとき,$S_1=S |\cos \theta|$を示せ.
(2)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の周上を含む内部にあるとき,$z$軸と$\triangle \mathrm{PQR}$の交点を$\mathrm{A}$とする.このとき正四面体$\mathrm{OPQR}$の体積$V$は$\displaystyle V=\frac{1}{3} \mathrm{OA} \cdot S_1$となることを示し,$S_1$の最小値を求めよ.
(3)$\mathrm{O}$が$\triangle \mathrm{P}^\prime \mathrm{Q}^\prime \mathrm{R}^\prime$の外部にあり,線分$\mathrm{OP}^\prime$と線分$\mathrm{Q}^\prime \mathrm{R}^\prime$が交点$\mathrm{B}$をもつとき,点$\mathrm{B}$を通り$z$軸に平行な直線と,直線$\mathrm{OP}$および直線$\mathrm{QR}$との交点をそれぞれ$\mathrm{C}$,$\mathrm{D}$とする.このとき四角形$\mathrm{OQ}^\prime \mathrm{P}^\prime \mathrm{R}^\prime$の面積を$S_2$とすると$\displaystyle V=\frac{1}{3} \mathrm{CD} \cdot S_2$となることを示し,$S_2$の最大値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第2問
$1$から$4$の数字が$1$つずつ書かれた正四面体のサイコロを独立に$4$回投げ,底面に書かれてある数字をサイコロを投げた順番に$a_1,\ a_2,\ a_3,\ a_4$とする.そして,座標平面上の$2$点を$\mathrm{P}_1(a_1,\ a_2)$,$\mathrm{P}_2(-a_3,\ a_4)$とする.また,原点を$\mathrm{O}$と表す.

(1)点$\mathrm{P}_1$が直線$y=2x$上にあり,かつ点$\mathrm{P}_2$が直線$\displaystyle y=-\frac{1}{2}x$上にある確率を求めよ.
(2)$\angle \mathrm{P}_1 \mathrm{OP}_2$が直角となる確率を求めよ.
(3)$\angle \mathrm{P}_1 \mathrm{OP}_2$が鋭角となる確率を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第1問
座標平面上の点$\mathrm{A}(1,\ 0)$と曲線$C:y=x \sqrt{x}$を考える(ただし$x \geqq 0$とする).曲線$C$上の点のうち,点$\mathrm{A}$までの距離が最小となるような点を$\mathrm{P}$とし,点$\mathrm{P}$における曲線$C$の接線と$x$軸との交点を$\mathrm{Q}$とする.

(1)点$\mathrm{P}$の$x$座標を求めよ.
(2)点$\mathrm{Q}$の$x$座標を求めよ.
(3)曲線$C$と$x$軸および線分$\mathrm{PQ}$で囲まれた図形を$x$軸のまわりに$1$回転させた回転体の体積を$V_1$とする.また,曲線$C$と$x$軸および線分$\mathrm{AP}$で囲まれた図形を$x$軸のまわりに$1$回転させた回転体の体積を$V_2$とする.このとき$\displaystyle \frac{V_2}{V_1}$の値を求めよ.
島根県立大学 公立 島根県立大学 2013年 第1問
次の問いに答えよ.

(1)曲線$y=2x^3-ax^2+3bx$上の点$(-1,\ 4)$における接線が,直線$2013x-671y+2013=0$と平行になるとき,$a$と$b$の値を求めよ.
(2)$\mathrm{SUCCESS}$の$7$文字をすべて使ってできる順列のうち,最初の文字と最後の文字がともに$\mathrm{C}$となる確率を分数で答えよ.
(3)$(5x-y-2z)(25x^2+5xy+y^2-2yz+4z^2+10zx)$の展開式において,$xyz$の係数を求めよ.
(4)円$x^2+2x+y^2-3=0$上を動く点$\mathrm{P}$と,$2$点$\mathrm{A}(3,\ 1)$,$\mathrm{B}(1,\ -4)$を$3$つの頂点とする三角形$\mathrm{ABP}$の重心$\mathrm{G}$の軌跡は,中心が$(a,\ b)$,半径$r$の円となる.このとき,$a,\ b,\ r$の値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第3問
曲線$7x^2+2 \sqrt{3}xy+9y^2=30$上の点$(x,\ y)$に対して,変換
\[ \left\{ \begin{array}{l}
X=x \cos \theta-y \sin \theta \\
Y=x \sin \theta+y \cos \theta \phantom{\displaystyle\frac{[ ]}{2}}
\end{array} \right. \]
を考える(ただし$\displaystyle 0 \leqq \theta \leqq \frac{\pi}{2}$とする).このとき$X,\ Y$のみたす式は
\[ a(\theta)X^2+b(\theta)XY+c(\theta)Y^2=30 \]
となる.ただし,$a(\theta)$,$b(\theta)$,$c(\theta)$は$\theta$のみにより決まる定数である.いま,$b(\theta)=0$をみたす$\theta$を$\theta_1$とする.

(1)$\theta_1$を求めよ.
(2)$a(\theta_1)X^2+c(\theta_1)Y^2=30$で囲まれた図形の面積を求めよ.
(3)$a(\theta_1)X^2+c(\theta_1)Y^2=30$に内接する平行四辺形の面積の最大値を求めよ.
島根県立大学 公立 島根県立大学 2013年 第2問
原点$\mathrm{O}$を起点に$\mathrm{XY}$座標軸上を次の法則に従って動く$2$つの点$\mathrm{A}$,$\mathrm{B}$がある.コインを投げて表が出れば点$\mathrm{A}$は$\mathrm{X}$軸上を$+1$だけ動き,点$\mathrm{B}$はその場にとどまる.一方,裏が出れば点$\mathrm{A}$はその場にとどまり,点$\mathrm{B}$は$\mathrm{Y}$軸上を$+1$だけ動く.次の問いに答えよ.

(1)$6$回コインを投げたとき,点$\mathrm{A}$が$(6,\ 0)$の位置に到達する確率を求めよ.
(2)$4$回コインを投げたとき,三角形$\mathrm{OAB}$の面積が$\displaystyle \frac{3}{2}$になる確率を求めよ.
(3)$6$回コインを投げたときの三角形$\mathrm{OAB}$の面積の期待値を求めよ.
札幌医科大学 公立 札幌医科大学 2013年 第4問
関数$f(x)=x \cos x-\sin x$を区間$I:\pi \leqq x \leqq 3\pi$で考える.

(1)不定積分$\displaystyle \int f(x) \, dx$を求めよ.
(2)区間$I$における関数$f(x)$の最大値と最小値を求めよ.区間$I$において$f(x)=0$をみたす$2$点を$x=s,\ t$とする.ただし$s<t$とする.
(3)$s$と$t$は,それぞれ次の$4$つの区間

$\displaystyle \pi \leqq x \leqq \frac{3}{2}\pi,\quad \frac{3}{2}\pi \leqq x \leqq 2\pi,$

$\displaystyle 2\pi \leqq x \leqq \frac{5}{2}\pi,\quad \frac{5}{2}\pi \leqq x \leqq 3\pi$

のどれに入るか.
(4)$x$軸の$4\pi-t \leqq x \leqq 2\pi$の部分,直線$x=4\pi-t$,直線$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$S$とする.また,$x$軸の$2\pi \leqq x \leqq t$の部分,$x=2\pi$および$y=f(x)$で囲まれた図形の面積を$T$とする.このとき$S$と$T$の大小を比較せよ.
鳥取環境大学 公立 鳥取環境大学 2013年 第4問
次のようなゲームについて以下の問に答えよ.

カードが$5$枚伏せてある.$1$回の試行ではカードをかき混ぜて$1$枚をでたらめに選んでめくり,出たカードの番号に対応する賞品がもらえる.$5$種類の賞品をすべてあつめるのが目的である.ただし,めくったカードはその都度戻すものとする.
ここで,すでに$k$種類の賞品を持っている状況で試行を$1$回行ってまだ持っていない賞品がもらえる確率を$P_k$で表すとする($0 \leqq k \leqq 4$).$P_0=1$である.

(1)$P_1$の値を求めよ.
(2)$P_k$を$k$を用いた式で表せ.
(3)$5$回の試行で賞品が全種類そろう確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(4)試行を$5$回行った時点で得られている賞品が$4$種類だけである確率を求めよ.その際,考え方を説明し,確率を求める式も示せ.
(5)ある事象が起きる確率が$x$であるとき,その事象が起きるまで繰り返し試行を行うならば,必要な試行回数の期待値は$\displaystyle \frac{1}{x}$だと知られている.ここで,賞品を$k$種類($0 \leqq k \leqq 4$)持っている状況から始めてまだ持っていない賞品のいずれか$1$つが得られるまでの試行回数の期待値を$Q_k$で表すとする($0 \leqq k \leqq 4$).$Q_k$を$P_k$を用いた式で表せ.さらに$k$を用いた($P_k$を使わない)形で式を表せ.
(6)賞品を$n$種類持っている状況から始めて賞品が$m$種類そろうまでの試行回数の期待値は$\displaystyle \sum_{k=n}^{m-1} Q_k$となる.ただし,$0 \leqq n<m \leqq 4$である.賞品を$1$つも持っていない状況から$4$種類そろうまでと,$4$種類そろった状況から最後の$1$種類が出るまでと,試行回数の期待値はどちらが大きいか.計算して求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第1問
関数$f(x)$を,
\[ f(x)=\left\{ \begin{array}{ll}
2x+1 & \displaystyle \left( 0 \leqq x<\frac{\pi}{2} \right) \\
2x+\sin x & \displaystyle \left( x \geqq \frac{\pi}{2} \right) \phantom{\frac{[ア]}{2}}
\end{array} \right. \]
と定め,関数$g(x)$を,$g(x)=f(2x)-2f(x) (0 \leqq x \leqq 2\pi)$と定める.

(1)関数$g(x)$の最大値と最小値,およびそれらをとる$x$の値を求めよ.
(2)曲線$C:y=g(x)$の概形を描け.ただし,変曲点に留意しなくてよい.
(3)区間$[0,\ 2\pi]$で,曲線$C$と$x$軸の間にある部分を$x$軸のまわりに$1$回転させてできる立体の体積$V$を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2013年 第4問
$2$次の正方行列について,以下の問いに答えよ.ただし,$E=\left( \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array} \right)$とする.

(1)行列$S=\left( \begin{array}{cc}
a & b \\
0 & d
\end{array} \right),\ T=\left( \begin{array}{cc}
e & f \\
g & h
\end{array} \right)$が,$TS=E$を満たすならば,$ST=E$となることを示せ.
(2)行列$A=\left( \begin{array}{cc}
a & b \\
c & d
\end{array} \right)$(ただし,$a \neq 0$)に対して,行列$B$は$BA=E$を満たすとする.さらに,$\displaystyle P=\left( \begin{array}{cc}
1 & 0 \\
-\displaystyle\frac{c}{a} & 1
\end{array} \right),\ Q=\left( \begin{array}{cc}
1 & 0 \\
\displaystyle\frac{c}{a} & 1
\end{array} \right)$を考えて,$M=PA,\ N=BQ$とおく.

(i) $NM=E$を示せ.
(ii) $MN=E$を示し,$AB=E$となることを示せ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。