タグ「分数」の検索結果

286ページ目:全4648問中2851問~2860問を表示)
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第6問
$\displaystyle f(x)=\frac{6x^2+4x+1}{(x+1)(2x^2+1)}$とおく.以下の問いに答えよ.

(1)等式$\displaystyle f(x)=\frac{a}{x+1}+\frac{bx+c}{2x^2+1}$が$x$についての恒等式となるように,定数$a,\ b,\ c$の値を求めよ.
(2)定積分$\displaystyle \int_0^1 f(x) \, dx$を求めよ.
公立はこだて未来大学 公立 公立はこだて未来大学 2013年 第7問
行列$C=\left( \begin{array}{cc}
0 & \displaystyle\frac{1}{2} \\
-\displaystyle\frac{1}{2} & 0
\end{array} \right)$について,以下の問いに答えよ.

(1)座標平面上の原点$\mathrm{O}$とは異なる点$\mathrm{A}$が,$C$の表す$1$次変換によって点$\mathrm{B}$に移されたとする.線分$\mathrm{OA}$の長さを$|\mathrm{OA|}$,線分$\mathrm{OB}$の長さを$|\mathrm{OB|}$とするとき,$\displaystyle \frac{|\mathrm{OB|}}{|\mathrm{OA|}}$を求めよ.また,$2$つのベクトル$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$のなす角を求めよ.
(2)$C,\ C^2,\ \cdots,\ C^n$の表す$n$個($n \geqq 2$)の$1$次変換によって,座標平面上の点$\mathrm{P}_0$がそれぞれ点$\mathrm{P}_1,\ \mathrm{P}_2,\ \cdots,\ \mathrm{P}_n$に移されるとする.点$\mathrm{P}_0$の座標が$(1,\ 1)$であるとき,線分$\mathrm{P}_0 \mathrm{P}_1$,線分$\mathrm{P}_1 \mathrm{P}_2$,$\cdots$,線分$\mathrm{P}_{n-1} \mathrm{P}_n$の長さの総和を$L_n$とする.$\displaystyle \lim_{n \to \infty}L_n$を求めよ.
福岡女子大学 公立 福岡女子大学 2013年 第2問
$m>0$,$n>0$とする.座標平面の$x$軸上に原点$\mathrm{O}$をはさんで左側に点$\mathrm{B}$,右側に点$\mathrm{C}$があり,線分$\mathrm{BC}$の長さを$c$とする.ただし,点$\mathrm{B}$と点$\mathrm{C}$は共に点$\mathrm{O}$と異なるものとする.以下の問に答えなさい.

(1)原点$\mathrm{O}$が線分$\mathrm{BC}$を$m:n$に内分するとき,$\mathrm{B}$,$\mathrm{C}$の$x$座標を$m,\ n,\ c$を用いて表しなさい.
(2)座標平面上の任意の点$\mathrm{A}(a,\ b)$は,次の関係式を満たすことを示しなさい.
\[ \frac{n}{m+n} \mathrm{AB}^2+\frac{m}{m+n} \mathrm{AC}^2=\mathrm{AO}^2+\frac{n}{m} \mathrm{BO}^2 \]
福岡女子大学 公立 福岡女子大学 2013年 第4問
$a \neq c$とする.座標平面上で,焦点$\mathrm{F}(0,\ c)$と準線$y=a$とから等距離にある点$(x,\ y)$の軌跡は放物線であり,その式を$x^2=4p(y-q)$とおくとき,$\displaystyle q=\frac{a+c}{2}$となる.以下の問に答えなさい.

(1)この放物線と直線$y=c$の交点は,焦点$\mathrm{F}$と準線$y=a$とから等距離にあることに着目して,$p$を$a$と$c$の式で表しなさい.
(2)$a>c>b$とする.焦点$\mathrm{F}$,準線$y=a$の放物線を$L$で表し,焦点$\mathrm{F}$,準線$y=b$の放物線を$L^\prime$で表す.$L$と$L^\prime$の交点$\mathrm{T}$の$y$座標を$a,\ b$を用いて表しなさい.
(3)$(2)$で求めた交点$\mathrm{T}$における$L$の接線と$L^\prime$の接線は,直交することを示しなさい.
京都府立大学 公立 京都府立大学 2013年 第3問
$0 \leqq a<1$とする.$xy$平面上の曲線$C$を$y=1+x \sqrt{1-x^2}$で,直線$\ell$を$y=1+ax$で定める.$C$と$\ell$で囲まれた部分を$x$軸のまわりに$1$回転してできる立体の体積を$a$の関数と考えて$V(a)$とする.以下の問いに答えよ.

(1)$-1 \leqq x \leqq 1$とするとき,不等式$2x \sqrt{1-x^2} \geqq x$を解け.
(2)$V(a)$を$a$を用いて多項式で表せ.
(3)$\displaystyle M_n=\frac{1}{2n} \sum_{k=1}^n V \left( \frac{k}{2n} \right)$とするとき,$\displaystyle \lim_{n \to \infty}M_n$を求めよ.
京都府立大学 公立 京都府立大学 2013年 第4問
$a,\ b,\ c$は$0$でない実数とする.行列$A=\left( \begin{array}{cc}
a & b \\
b & c
\end{array} \right)$について,以下の問いに答えよ.

(1)$BAB$は対角行列,かつ,$B^2$は単位行列とするとき,$B=\left( \begin{array}{cc}
p & q \\
q & r
\end{array} \right)$の成分はすべて実数であることを示せ.
(2)$\displaystyle a=\frac{5}{8},\ b=-\frac{1}{2},\ c=\frac{1}{3}$とする.自然数$n$に対して$\left( \begin{array}{c}
x_n \\
y_n
\end{array} \right)=A^n \left( \begin{array}{c}
3 \\
4
\end{array} \right)$とする.このとき,$\displaystyle \lim_{n \to \infty}x_n=0$かつ$\displaystyle \lim_{n \to \infty}y_n=0$を示せ.
宮城大学 公立 宮城大学 2013年 第1問
次の空欄$[ア]$から$[サ]$にあてはまる数や式を書きなさい.

(1)次の等式を満たす自然数$n$の値を求めたい.
\[ \log_5 \left( \comb{n}{n-2} \right) =\frac{1}{2} \log_5 784 \]
$784=[ア]^2 \times [イ]^2$(ただし,$[ア]$,$[イ]$は$1<[ア]<[イ]<10$を満たす自然数とする.)だから,
\[ \log_5 \left( \comb{n}{n-2} \right) =\log_5 [ウ] \]
ゆえに,$\displaystyle \frac{[エ]}{2 \cdot 1}=[ウ]$である.$n$は自然数だから,$n=[オ]$である.
(2)$2$次関数$y=-x^2+2mx+3m^2$を平方完成すれば,
\[ y=-\left( x-[カ] \right)^2+[キ] \quad \cdots\cdots① \]
となる.したがって,$①$の頂点の軌跡は,放物線
\[ y=[ク]x^2 \quad \cdots\cdots② \]
上にある.
$2$つの放物線$①$と$②$の交点の$x$座標を$m$を用いて表せば,
\[ x=[ケ] \quad \text{または} \quad x=[コ] \text{である.} \]
また,$2$つの放物線$①$と$②$で囲まれた部分の面積が$\displaystyle \frac{5}{6}$のとき,
\[ m=[サ] \quad \text{(ただし,} m>0 \text{とする.)である.} \]
宮城大学 公立 宮城大学 2013年 第3問
次の空欄$[ナ]$から$[ヘ]$にあてはまる数や式を書きなさい.

ゆがんだサイコロがあり,各々の目の出る確率は下記の確率分布表の通りである.

確率分布表 \quad
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
目 & $1$ & $2$ & $3$ & $4$ & $5$ & $6$ \\ \hline
確率 & $\displaystyle\frac{1}{9}$ & $\displaystyle\frac{4}{45}$ & $p$ & $q$ & $\displaystyle\frac{1}{35}$ & $r$ \\ \hline
\end{tabular}

また,このサイコロを$6$回投げたとき,次のような$2$つのデータ$(ⅰ)$,$(ⅱ)$が残った.
データ$(ⅰ) \cdots 4$回目に投げたとき$2$度目の$3$の目になる確率が$\displaystyle \frac{4}{27}$であった.
データ$(ⅱ) \cdots$出る目の期待値が$\displaystyle \frac{1153}{315}$であった.
このとき,以下の問いに答えなさい.ただし,$\displaystyle \frac{1}{35}<\frac{4}{45}<\frac{1}{9}<q<r<p<\frac{2}{3}$とする.
まず,確率分布表から,$p+q+r=[ナ] \cdots\cdots ①$である.
次に,データ$(ⅰ)$は$3$の目が$3$回目までに既に$1$回だけ出ていることを示すから,
\[ [ニ]=\frac{4}{27} \]
となる.
これより,次の$2$次方程式が得られる.
\[ [ヌ]=0 \]
条件より,$\displaystyle p<\frac{2}{3}$だから,$p=[ネ]$である.すると$①$から,
\[ q+r=[ノ] \cdots\cdots② \]
となる.
データ$(ⅱ)$から,期待値の式を$p,\ q,\ r$を用いて表せば,
\[ [ハ]=\frac{1153}{315} \]
である.
ゆえに,$p=[ネ]$を適用して,
\[ 2q+3r=[ヒ] \cdots\cdots③ \]
となる.$②$と$③$を連立して,$q=[フ]$,$r=[ヘ]$を得る.
名古屋市立大学 公立 名古屋市立大学 2013年 第3問
曲線$\displaystyle y=\frac{x^2}{2}$(ただし,$x \leqq 0$)上に点$\displaystyle \mathrm{P} \left( a,\ \frac{a^2}{2} \right)$を,曲線$y=x^2$(ただし,$x \geqq 0$)上に点$\mathrm{Q}(b,\ b^2)$をとる.$\mathrm{P}$および$\mathrm{Q}$における接線をそれぞれ$\ell,\ m$とする.$\ell$と$m$の交点を$\mathrm{R}$とし,$\theta=\angle \mathrm{PRQ}$とする.$2b-a=4$のとき,次の問いに答えよ.

(1)$\theta$を直角にする$a$の値を求めよ.
(2)$\theta$が直角でないとき,$\tan \theta$を$a$で表せ.
(3)$\theta$が最大および最小となる$a$の値をそれぞれ求めよ.
名古屋市立大学 公立 名古屋市立大学 2013年 第1問
次の問いに答えよ.

(1)関数$f(x)=x \log x-\tan x$について,曲線$y=f(x)$上の点$\displaystyle \mathrm{P} \left( \frac{\pi}{4},\ f \left( \frac{\pi}{4} \right) \right)$における接線の方程式を求めよ.

(2)定積分$\displaystyle A=\int_0^\pi e^{-ax} \cos 2x \, dx$を求めよ.ただし,$a \neq 0$とする.

(3)定積分$\displaystyle B=\int_0^\pi e^{-ax} \sin^2 x \, dx$,$\displaystyle C=\int_0^\pi e^{-ax} \cos^2 x \, dx$を求めよ.ただし,$a \neq 0$とする.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。