タグ「分数」の検索結果

24ページ目:全4648問中231問~240問を表示)
佐賀大学 国立 佐賀大学 2016年 第4問
複素数平面上の点$z$に対して
\[ w=\frac{3(1-i)z-2i}{z+3(1-i)} \]
で表される点$w$をとる.このとき,次の問に答えよ.

(1)$w=z$となるような点$z$は$2$つある.これらを求めよ.
(2)$(1)$で求めた異なる$2$点を$\alpha,\ \beta$とする.ただし,$0 \leqq \arg{\alpha}<\arg{\beta}<2\pi$とする.$z$が$\alpha,\ \beta$と異なる点であるとき,
\[ \frac{w-\beta}{w-\alpha}=k \cdot \frac{z-\beta}{z-\alpha} \]
となるような定数$k$の値を求めよ.
(3)複素数$z_n$を
\[ z_1=0,\quad z_{n+1}=\frac{3(1-i)z_n-2i}{z_n+3(1-i)} \quad (n=1,\ 2,\ 3,\ \cdots) \]
で定める.また,$z_n$の実部と虚部をそれぞれ$x_n,\ y_n$とする.このとき,数列$\{x_n\},\ \{y_n\}$の一般項をそれぞれ求めよ.さらに,数列$\{x_n\},\ \{y_n\}$の極限を求めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
お茶の水女子大学 国立 お茶の水女子大学 2016年 第2問
以下では$n$は$0$以上の整数とする.関係式
\[ H_0(x)=1,\quad H_{n+1}(x)=2xH_n(x)-H_n^\prime(x) \]
によって多項式$H_0(x),\ H_1(x),\ \cdots$を定め,$\displaystyle f_n(x)=H_n(x)e^{-\frac{x^2}{2}}$とおく.

(1)$-f_0^{\prime\prime}(x)+x^2f_0(x)=a_0f_0(x)$が成り立つように定数$a_0$を定めよ.
(2)$f_{n+1}(x)=xf_n(x)-f_n^\prime(x)$を示せ.
(3)$2$回微分可能な関数$f(x)$に対して,$g(x)=xf(x)-f^\prime(x)$とおく.定数$a$に対して
\[ -f^{\prime\prime}(x)+x^2f(x)=af(x) \]
が成り立つとき,
\[ -g^{\prime\prime}(x)+x^2g(x)=(a+2)g(x) \]
を示せ.
(4)$-f_n^{\prime\prime}(x)+x^2f_n(x)=a_nf_n(x)$が成り立つように定数$a_n$を定めよ.
大分大学 国立 大分大学 2016年 第1問
大きさ$1$のベクトル$\overrightarrow{a}$と,$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{b}$のなす角を$\theta$とする.


(1)$|\, 3 \overrightarrow{a|+t \overrightarrow{b}}$が最小となるような実数$t$の値を$|\!\overrightarrow{b}\!|$,$\theta$を用いて表しなさい.

(2)$|\, 3 \overrightarrow{a|+t \overrightarrow{b}}$は$\displaystyle t=-\frac{1}{2}$のとき最小値$2 \sqrt{2}$をとる.$|\!\overrightarrow{b}\!|$および$\cos \theta$の値を求めなさい.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
大分大学 国立 大分大学 2016年 第4問
初項$3$の数列$\{a_n\}$がある.$b_n=a_{n+1}-3a_n$とするとき,数列$\{b_n\}$は初項$6$,公比$3$の等比数列である.

(1)$\displaystyle c_n=\frac{a_n}{3^n}$とするとき,$c_{n+1}-c_n$を求めなさい.
(2)$a_n$を$n$の式で表しなさい.
(3)$\displaystyle S_n=\sum_{k=1}^n a_k$とするとき,$S_n$を$n$の式で表しなさい.
大分大学 国立 大分大学 2016年 第1問
大きさ$1$のベクトル$\overrightarrow{a}$と,$\overrightarrow{\mathrm{0}}$でないベクトル$\overrightarrow{b}$のなす角を$\theta$とする.


(1)$|\, 3 \overrightarrow{a|+t \overrightarrow{b}}$が最小となるような実数$t$の値を$|\!\overrightarrow{b}\!|$,$\theta$を用いて表しなさい.

(2)$|\, 3 \overrightarrow{a|+t \overrightarrow{b}}$は$\displaystyle t=-\frac{1}{2}$のとき最小値$2 \sqrt{2}$をとる.$|\!\overrightarrow{b}\!|$および$\cos \theta$の値を求めなさい.
大分大学 国立 大分大学 2016年 第2問
$a$を$0$でない実数とする.$2$つの放物線$y=x^2$,$\displaystyle y=-x^2+2ax+\frac{1}{2a^2}$がある.

(1)$2$つの放物線は異なる$2$点で交わることを示しなさい.
(2)$2$つの放物線の交点の$x$座標を$\alpha,\ \beta (\alpha<\beta)$とするとき,$\beta-\alpha$を$a$の式で表しなさい.
(3)$2$つの放物線で囲まれた部分の面積$S$を$a$の式で表しなさい.
(4)$(3)$で定めた面積$S$の最小値を求めなさい.
大分大学 国立 大分大学 2016年 第2問
自然数$n$に対して関数$y=2nx-x^2$のグラフと$x$軸で囲まれた領域(境界線を含む)$R_n$を考える.以下の問いに答えなさい.

(1)領域$R_n$に含まれる格子点($x$座標と$y$座標がともに整数である点)の数$S_n$を求めなさい.
(2)点$\mathrm{A}(0,\ 0)$,$\mathrm{B}(2n,\ 0)$,および関数$y$の頂点を結ぶ線分で囲まれた領域(境界線を含む)に含まれる格子点の数$T_n$を求めなさい.
(3)$\displaystyle \lim_{n \to \infty} \frac{T_n}{S_n}$を求めなさい.
大分大学 国立 大分大学 2016年 第3問
中心が原点$\mathrm{O}$で半径が$a$の定円$C_1$上を,半径$\displaystyle \frac{a}{4}$の円$C_2$が内接しながらすべることなく回転する.円$C_2$上の点$\mathrm{P}$は最初に点$\mathrm{A}(a,\ 0)$にあるとする.円$C_2$の中心を$\mathrm{B}$とするとき,以下の問いに答えなさい.

(1)$\angle \mathrm{AOB}=\theta$とする.$\overrightarrow{\mathrm{BP}}$を$a,\ \theta$で表しなさい.
(2)$\overrightarrow{\mathrm{OP}}$を$a,\ \theta$で表しなさい.
(3)$0 \leqq \theta \leqq 2\pi$のとき,動点$\mathrm{P}$が移動する距離を求めなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。