タグ「分数」の検索結果

188ページ目:全4648問中1871問~1880問を表示)
金沢工業大学 私立 金沢工業大学 2014年 第2問
行列$A,\ B$を
\[ A=\left( \begin{array}{cc}
1 & 2 \\
2 & 9
\end{array} \right),\quad B=\left( \begin{array}{cc}
x & y \\
y & z
\end{array} \right) \]
とする.ただし,$x,\ y,\ z$は実数である.

(1)$AB=BA$であるとき,$z=x+[サ]y$である.

(2)$B$が$A$の逆行列ならば,$\displaystyle x=\frac{[シ]}{[ス]}$,$\displaystyle y=\frac{[セソ]}{[タ]}$である.
金沢工業大学 私立 金沢工業大学 2014年 第4問
関数$\displaystyle F(x)=\int_0^{2x} (x-t) \cos 3t \, dt$を考える.

(1)$\displaystyle F^\prime(x)=\frac{[ク]}{[ケ]} \sin [コ]x-[サ] x \cos [シ]x$より$\displaystyle F^\prime \left( \frac{\pi}{6} \right)=\frac{[ス]}{[セ]}$である.
(2)$\displaystyle F^{\prime\prime}(x)=[ソタ] x \sin [チ] x$より$\displaystyle F^{\prime\prime} \left( \frac{\pi}{6} \right)=[ツ]$である.
京都産業大学 私立 京都産業大学 2014年 第1問
以下の$[ ]$にあてはまる式または数値を記入せよ.

(1)連立不等式
\[ \left\{ \begin{array}{l}
x^2+x-2 \leqq 0 \displaystyle \phantom{\frac{1}{[ ]}} \\
\displaystyle\frac{x-6}{7}>\frac{x-4}{5}
\end{array} \right. \]
を満たす$x$の値の範囲は$[ ]$である.
(2)座標平面上の$3$点$\mathrm{A}(1,\ 1)$,$\mathrm{B}(3,\ 3)$,$\mathrm{C}(2,\ 6)$に対して,$2$つのベクトル$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$の内積は$[ ]$である.
(3)$(x+2y)^6$の展開式における$x^2y^4$の係数は$[ ]$である.
(4)$a$を実数とするとき,$x$の方程式$(\log_2 x)^2+(a+1) \log_2 x+1=0$が異なる$2$つの実数の解をもつような$a$の値の範囲は$[ ]$である.
(5)$\triangle \mathrm{OAB}$において$\mathrm{OA}=3$,$\mathrm{OB}=4$,$\angle \mathrm{AOB}={15}^\circ$のとき,$\triangle \mathrm{OAB}$の面積は$[ ]$である.
京都産業大学 私立 京都産業大学 2014年 第2問
以下の$[ ]$にあてはまる式または数値を記入せよ.

行列$A=\left( \begin{array}{cc}
2 & 0 \\
1 & 3
\end{array} \right)$の$n$乗を$A^n=\left( \begin{array}{cc}
a_n & 0 \\
b_n & c_n
\end{array} \right)$とおく.ただし,$n$は自然数とする.

(1)$a_2=[ア]$,$b_2=[イ]$,$c_2=[ウ]$である.
(2)$a_{n+1},\ b_{n+1},\ c_{n+1}$をそれぞれ$a_n,\ b_n,\ c_n$を用いて表すと,$a_{n+1}=[エ]$,$b_{n+1}=[オ]$,$c_{n+1}=[カ]$である.
(3)$c_n$を$n$の式で表すと$[キ]$である.
(4)$b_n$を$n$の式で表すと$[ク]$である.
(5)$\displaystyle \lim_{n \to \infty} \frac{b_n}{a_n+c_n}=[ケ]$である.
京都産業大学 私立 京都産業大学 2014年 第3問
$\mathrm{O}$を原点とする$xy$平面上に$2$点$\mathrm{A}(2,\ 0)$,$\mathrm{B}(0,\ 2)$がある.直線$\ell$は辺$\mathrm{OB}$上の点$\mathrm{P}(0,\ t) (0 \leqq t \leqq 2)$を通り,$\triangle \mathrm{OAB}$の面積を$2$等分しているとする.直線$\ell$と$\triangle \mathrm{OAB}$の辺の$2$つの交点のうち,点$\mathrm{P}$でない方の点を$\mathrm{Q}$とし,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.以下の問いに答えよ.

(1)$0 \leqq t \leqq 1$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(2)$(1)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(3)$1 \leqq t \leqq 2$のとき,点$\mathrm{R}$の座標$(x,\ y)$を$t$を用いて表せ.
(4)$(3)$のとき,$x$のとる値の範囲を求めよ.また,$y$を$x$の式で表せ.
(5)$(2)$で求めた$x$の式を$f(x)$,$(4)$で求めた$x$の式を$g(x)$とする.$2$曲線$y=f(x)$,$y=g(x)$と直線$\displaystyle x=\frac{1}{2}$で囲まれた部分の面積を求めよ.
中京大学 私立 中京大学 2014年 第1問
以下の各問で,$[ ]$にあてはまる数値または記号を求めよ.

(1)放物線$y=ax^2+bx+c (a>0)$が点$(0,\ 9)$を通るとき,
\[ c=[ア] \]
である.さらに,この放物線が点$(3,\ 3)$を通り,放物線の頂点が直線$16x-4y=29$上にあるとき,
\[ (a,\ b)=([イ],\ -[ウ]) \ \text{または} \ \left( \frac{[エ][オ]}{[カ]},\ -\frac{[キ][ク]}{3} \right) \]
である.
(2)$\mathrm{AB}=\mathrm{AC}=2$,$\angle \mathrm{BAC}={90}^\circ$である$\triangle \mathrm{ABC}$の内接円の半径は
\[ [ア]-\sqrt{2} \]
である.また,この内接円に外接し,辺$\mathrm{AB}$,辺$\mathrm{AC}$に接する円の半径は
\[ [イ][ウ]-[エ] \sqrt{2} \]
である.
(3)初項が$a$($a$は自然数),公差が$4$の等差数列$\{a_n\}$と,$a_n$を$9$で割った余りの数列$\{b_n\}$があり,$\displaystyle S_n=\sum_{k=1}^n b_k$とする.$a=1$とするとき,$S_n>2014$となる最小の$n$は
\[ [ア][イ][ウ] \]
であり,
\[ S_{[ア][イ][ウ]}=20 [エ][オ] \]
である.また,$S_n$がちょうど$2014$となる$a$の最小値は
\[ [カ] \]
である.
(4)関数$\displaystyle f(\theta)=2(\sin \theta+\cos \theta)^3-9(\sin \theta+\cos \theta) \left( -\frac{\pi}{4} \leqq \theta \leqq \frac{\pi}{4} \right)$は$\displaystyle \theta=\frac{\pi}{6}$のとき,
\[ f \left( \frac{\pi}{6} \right)=-[ア]-[イ] \sqrt{[ウ]} \]
となる.また,
$\displaystyle \theta=\frac{\pi}{[エ][オ]}$のとき,最小値$-[カ] \sqrt{[キ]}$

をとり,

$\displaystyle \theta=-\frac{\pi}{[ク]}$のとき,最大値$[ケ]$

をとる.
金沢工業大学 私立 金沢工業大学 2014年 第6問
原点$\mathrm{O}$を通り,曲線$y=2+2 \log x$に接する直線を$\ell$とし,その接点を$\mathrm{A}$とする.また,この曲線と直線$\ell$,および$x$軸で囲まれた図形を$D$とする.

(1)この曲線と$x$軸との交点の$x$座標は$\displaystyle \frac{[ア]}{e}$である.
(2)接点$\mathrm{A}$の座標は$([イ],\ [ウ])$である.
(3)図形$D$の面積は$\displaystyle [エ]-\frac{[オ]}{e}$である.
(4)図形$D$を$x$軸のまわりに$1$回転してできる立体の体積は$\displaystyle \frac{[カ]([キ]-e)}{[ク]e} \pi$である.
藤田保健衛生大学 私立 藤田保健衛生大学 2014年 第2問
三角形$\mathrm{ABC}$において$\displaystyle \angle \mathrm{ABC}=\frac{\pi}{2}$,$\mathrm{AB}=c$,$\mathrm{CA}=b$,$\angle \mathrm{ACB}=\theta$とする.また辺$\mathrm{BC}$の延長上に点$\mathrm{D}$を$\mathrm{CD}=b$となるようにとり,$\angle \mathrm{ADB}=\alpha$とする.

(1)この$b,\ c$に対して$x+y=2b^2$,$xy=b^4-b^2c^2$を満足する$x,\ y$で$x>y$となるものを求めると,$(x,\ y)=[$5$]$である.
(2)線分$\mathrm{AD}$の長さの平方は$[$6$]$である.従って$\sin \alpha$の値を二重根号を用いずに,$b,\ c$で表せば$[$7$]$となり,さらにこれを$\sin \theta$で表せば$[$8$]$となる.
中部大学 私立 中部大学 2014年 第1問
次の$[ア]$から$[コ]$にあてはまる数字または符号を記入せよ.

(1)$\displaystyle \frac{4 \sqrt{3}}{\sqrt{2}+\sqrt{3}-\sqrt{5}}-2 \sqrt{4+\sqrt{15}}=[ア]$
(2)平行四辺形$\mathrm{OACB}$において$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.辺$\mathrm{OA}$を$2:1$に分ける点を$\mathrm{D}$,辺$\mathrm{OB}$の中点を$\mathrm{E}$とし,$\mathrm{BD}$と$\mathrm{CE}$の交点を$\mathrm{F}$とする.このとき,$\displaystyle \overrightarrow{\mathrm{OF}}=\frac{[イ]}{[ウ]} \overrightarrow{a}+\frac{[エ]}{[オ]} \overrightarrow{b}$である.
(3)あるパーティー会場には$100$名の来場者があった.来場までの交通手段についてアンケートをとったところ,電車を利用した人が$46$名,バスを利用した人が$53$名,両方とも利用した人が$12$名であった.無回答の人はいなかった.このとき,電車もバスも利用していない人は$[カ][キ]$名である.
(4)$\displaystyle \int_{-3}^2 (|x^2+x-2|+1) \, dx=\frac{[ク][ケ]}{[コ]}$
中部大学 私立 中部大学 2014年 第2問
$0<x<\pi$で定義された関数$\displaystyle f(x)=\frac{1}{\sin x}$について,次の問いに答えよ.

(1)$\displaystyle f \left( \frac{\pi}{3} \right)$を求めよ.
(2)$f^\prime(x)$と$f^{\prime\prime}(x)$を求めよ.また,$f^{\prime\prime}(x)>0$となることを示せ.これらの結果を増減表に書き,曲線$y=f(x)$のグラフの概形をかけ.
(3)$0 \leqq t \leqq 1$に対し,$0<a \leqq x<\pi$を満たす任意の$a$と$x$を考えると,
\[ tf(a)+(1-t)f(x) \geqq f(at+(1-t)x) \]
が成り立つことを示せ.
(4)三角形$\mathrm{ABC}$のそれぞれの角を$A,\ B,\ C$とすると$\displaystyle \frac{1}{\sin A}+\frac{1}{\sin B}+\frac{1}{\sin C} \geqq 2 \sqrt{3}$が成り立つことを証明せよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。