タグ「分数」の検索結果

183ページ目:全4648問中1821問~1830問を表示)
東北工業大学 私立 東北工業大学 2014年 第3問
次の問いに答えよ.

(1)$\sqrt[3]{a^4} \times a^4 \times \sqrt[6]{a^2} \div (a \sqrt[3]{a^2})=a^{[ナ][ニ]}$
(2)$\log_3 108-3 \log_9 4+2 \log_9 6=[ヌ][ネ]$
(3)$2$個のさいころを同時に投げるとき,目の和が素数になる確率は$\displaystyle \frac{[ノ][ハ]}{12}$である.
(4)等比数列$\{a_n\}$の第$3$項は$12$,第$6$項は$96$である.この数列の初項から第$n$項までの和が$765$になった.このとき$n=[ヒ][フ]$である.
(5)平面上の$2$つのベクトル$\overrightarrow{a}=(4,\ 2)$と$\overrightarrow{b}=(2 \sqrt{3}-1,\ 2+\sqrt{3})$のなす角は$[ヘ][ホ]^\circ$である.
東北学院大学 私立 東北学院大学 2014年 第1問
次の各問題の$[ ]$に適する答えを記入せよ.

(1)$\displaystyle x+\frac{1}{x}=3$のとき$\displaystyle x^3+x^2+x+1+\frac{1}{x}+\frac{1}{x^2}+\frac{1}{x^3}=[ア]$である.
(2)$6^{50}$は$[イ]$桁の数である.ただし$\log_{10}2=0.3010$,$\log_{10}3=0.4771$とする.
(3)$0 \leqq x<2\pi$とする.$2 \sin^2 x+3 \sin x-2<0$となる$x$の範囲を求めると$[ウ]$となる.
東北学院大学 私立 東北学院大学 2014年 第4問
関数$\displaystyle f(x)=\cos x-\frac{2}{3} \cos^3 x (0 \leqq x \leqq \pi)$について以下の問いに答えよ.

(1)$f^\prime(x)=0$となる$x$を求めよ.
(2)$y=f(x)$のグラフの概形を描け.
(3)$\displaystyle \int_0^{\frac{\pi}{2}} f(x) \, dx$を求めよ.
埼玉工業大学 私立 埼玉工業大学 2014年 第1問
実数$a,\ b$は
\[ \left\{ \begin{array}{l}
2^{2a}+5^{2b}=41 \\
2^{a-2} \cdot 5^b=5
\end{array} \right. \]
を満たす.このとき,
\[ 2^{2a}+5^{2b}=(2^a+5^b)^2-[ア] \cdot 2^a \cdot 5^b,\quad 2^{a-2} \cdot 5^b=\frac{1}{[イ]} 2^a \cdot 5^b \]
に注意すると,
\[ 2^a+5^b=[ウ],\quad 2^a \cdot 5^b=[エオ] \]
である.解と係数の関係より,$a,\ b$の値は
\[ \left\{ \begin{array}{l}
a=[カ] \\
b=[キ]
\end{array} \right. \quad \text{と} \quad \left\{ \begin{array}{l}
a=\log_2 [ク] \\
b=\log_5 [ケ]
\end{array} \right. \]
である.
埼玉工業大学 私立 埼玉工業大学 2014年 第3問
曲線$\ell:y=\log x (1 \leqq x \leqq 2)$上の点$(t,\ \log t)$における$\ell$の接線の方程式は
\[ y=\frac{[ハ]}{t}x+\log t-[ヒ] \]
であり,この接線と直線$x=1$,$x=2$および$\ell$で囲まれた図形の面積$S$は,
\[ S=\frac{[フ]}{2t}+\log t-[ヘ] \log 2 \]
である.$\displaystyle t=\frac{[ホ]}{[マ]}$のとき,$S$は最小値$\displaystyle 1+\log \frac{[ミ]}{[ム]}$をとる.
東北医科薬科大学 私立 東北医科薬科大学 2014年 第3問
三角形$\mathrm{OAB}$において線分$\mathrm{OA}$を$2:5$に内分する点を$\mathrm{C}$,線分$\mathrm{OB}$を$1:3$に内分する点を$\mathrm{D}$とおく.このとき,次の問に答えなさい.

(1)$\displaystyle \overrightarrow{\mathrm{CD}}=\frac{[アイ]}{[ウ]} \overrightarrow{\mathrm{OA}}+\frac{[エ]}{[オ]} \overrightarrow{\mathrm{OB}}$である.
(2)線分$\mathrm{CD}$を$2:1$に内分する点を$\mathrm{E}$とおくと$\overrightarrow{\mathrm{OE}}=\frac{[カ]}{[キク]} \overrightarrow{\mathrm{OA}}+\frac{[ケ]}{[コ]} \overrightarrow{\mathrm{OB}}$である.
(3)三角形$\mathrm{OAB}$は$3$辺の長さの比が$\mathrm{OA}:\mathrm{OB}:\mathrm{AB}=5:4:7$で,外接円の半径が$\displaystyle \frac{35 \sqrt{6}}{12}$とする.このとき$\displaystyle \cos \angle \mathrm{AOB}=\frac{[サシ]}{[ス]}$であり,また三角形$\mathrm{OAB}$の面積は$[セソ] \sqrt{[タ]}$である.
(4)$\alpha,\ \beta$は実数で,点$\mathrm{P}$,$\mathrm{Q}$は$\overrightarrow{\mathrm{OP}}=\alpha \overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OQ}}=\beta \overrightarrow{\mathrm{OB}}$を満たす点とする.$3$点$\mathrm{P}$,$\mathrm{E}$,$\mathrm{Q}$が同一直線上にあり,$\overrightarrow{\mathrm{PD}}$と$\overrightarrow{\mathrm{CQ}}$が平行である.ただし点$\mathrm{P}$は点$\mathrm{C}$と異なるとするとき$\displaystyle \alpha=\frac{[チ]}{[ツ]}$,$\displaystyle \beta=\frac{[テ]}{[ト]}$である.
獨協大学 私立 獨協大学 2014年 第1問
次の設問の空欄を,あてはまる数値や記号,式などで埋めなさい.

(1)$2$次関数$y=x^2-6x+7$のグラフは$y=x^2+2x+2$のグラフを,$x$軸方向に$[$1$]$,$y$軸方向に$[$2$]$だけ平行移動したものである.
(2)次の式の分母を有理化せよ.
\[ (ⅰ) \frac{\sqrt{3}}{2-\sqrt{3}}=[$3$] \qquad (ⅱ) \frac{5 \sqrt{6}+\sqrt{2}}{\sqrt{6}+\sqrt{2}}=[$4$] \]
(3)$2$点$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(5,\ 2)$を結ぶ線分$\mathrm{AB}$を$2:1$に内分する点$\mathrm{C}([$5$],\ [$6$])$を通り,線分$\mathrm{AB}$に垂直な直線の方程式は$[$7$]$と表される.
(4)数列$\{a_n\}$が$2,\ 3,\ 7,\ 14,\ 24,\ \cdots$のように与えられている.その階差数列を$\{b_n\}$とする.このとき,$b_1=[$8$]$,$b_2=[$9$]$であり,数列$\{b_n\}$の一般項は$b_n=[$10$]$と表される.よって,数列$\{a_n\}$の一般項は$a_n=[$11$]$となる.
(5)$x+y=20$,$x>0$,$y>0$であるとき,$\log_{\frac{1}{10}}x+\log_{\frac{1}{10}}y$の最小値は$[$12$]$である.
(6)各辺の長さが$\mathrm{AB}=1$,$\mathrm{BC}=2$,$\mathrm{CA}=k$である$\triangle \mathrm{ABC}$の面積は,$k=[$13$]$のとき最大値$[$14$]$をとる.
(7)$2$つのベクトル$\overrightarrow{x}=(a,\ b)$,$\overrightarrow{y}=(1,\ c)$について,$\overrightarrow{x} \perp \overrightarrow{y}$,$|\overrightarrow{x}-\overrightarrow{y}|=2$,$abc=-1$を満たす実数$a,\ b,\ c$の組合せは$[$15$]$通り存在する.また,このうち$a+b+c$の最小値は$[$16$]$となる.
(8)$2$人の男性$\mathrm{A}$,$\mathrm{B}$と$2$人の女性$\mathrm{a}$,$\mathrm{b}$がいる.この$4$人は無作為に異性を$1$人ずつ選ぶ.このとき,男性が選んだ女性がその男性を選べば,その男女をペアとする.たとえば,男性$\mathrm{A}$が女性$\mathrm{a}$を選び,女性$\mathrm{a}$も男性$\mathrm{A}$を選べば,その男女はペアとなる.このとき,ペアが全くできない確率は$[$17$]$,ペアがちょうど$1$組だけできる確率は$[$18$]$,ペアが$2$組できる確率は$[$19$]$である.
埼玉工業大学 私立 埼玉工業大学 2014年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{OB}$を$2:3$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{BM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AP}}=x \overrightarrow{\mathrm{AN}}$,$\overrightarrow{\mathrm{BP}}=y \overrightarrow{\mathrm{BM}}$($x,\ y$は実数)とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=(1-[コ]x) \overrightarrow{a}+\frac{[サ]}{[シ]} x \overrightarrow{b}$である.
(2)$\overrightarrow{\mathrm{OP}}$を$y,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ス]}{[セ]} y \overrightarrow{a}+(1-[ソ] y) \overrightarrow{b}$である.
(3)$x,\ y$の値はそれぞれ$\displaystyle x=\frac{[タ]}{[チツ]},\ y=\frac{[テ]}{[トナ]}$である.
(4)$\triangle \mathrm{OPN}$の面積は$\triangle \mathrm{OAB}$の面積の$\displaystyle \frac{[ニヌ]}{[ネノ]}$倍である.
埼玉工業大学 私立 埼玉工業大学 2014年 第4問
次の問いに答えよ.

(1)整式$P(x)=x^3-7x^2+14x-8$は$x-4$で割り切れる.$P(x)=x^3-7x^2+14x-8=0$の解は小さい順に$[メ]$,$[モ]$,$[ヤ]$である.
(2)$0 \leqq x \leqq \pi$のとき,$y=-8 \sin x \cos 2x-12 \sin^2 x+8 \sin x$は,$\displaystyle x=\frac{\pi}{[ユ]}$のとき,最大値$y=[ヨ]$をとり,$\displaystyle x=\frac{\pi}{[ラ]}$のとき,最小値$y=[リル]$をとる.
(3)$1$枚の硬貨を$5$回投げたとき,表が$1$回だけ出る確率は$\displaystyle \frac{[レ]}{[ロワ]}$である.
甲南大学 私立 甲南大学 2014年 第1問
以下の問いに答えよ.

(1)$a,\ b,\ c,\ d,\ x,\ y$は$0$でない実数,$i$は虚数単位とする.
\[ \left( x+\frac{1}{yi} \right) \cdot \frac{1}{\displaystyle\frac{1}{a}+bi}=-\frac{d}{c}i \]
の関係があるとき,$x,\ y$を$a,\ b,\ c,\ d$を用いて表せ.
(2)$t$は$t>-1$を満たす定数とする.$-1 \leqq x \leqq t$における関数$f(x)=2x^2-4x+1$の最大値と最小値の差が$8$であるような$t$の値の範囲を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。