タグ「分数」の検索結果

146ページ目:全4648問中1451問~1460問を表示)
三重県立看護大学 公立 三重県立看護大学 2015年 第1問
次の$[$1$]$から$[$10$]$に適する答えを書きなさい.

(1)$-2z-xy^2+2xyz-x+x^2y+y$を因数分解すると$[$1$]$となる.
(2)$p>0$のとき,$\displaystyle p+\frac{1}{p}$は$[$2$]$で最小値$[$3$]$となる.
(3)サイコロを$4$つ投げるとき,すべての目が異なる確率は$[$4$]$であり,少なくとも$2$つのサイコロの目が同じである確率は$[$5$]$である.
(4)$\overrightarrow{a}=(3,\ -2)$,$\overrightarrow{b}=(-2,\ -1)$のとき,$|\overrightarrow{a}+t \overrightarrow{b}|$を最小にする$t$の値は$t=[$6$]$,そのときの最小値は$[$7$]$となる.
(5)$\log_2 (x-1)+\log_2 (6-x)=2$を解くと,解は小さい方から順に$[$8$]$,$[$9$]$となる.
(6)数列$1 \cdot 3 \cdot 5,\ 3 \cdot 5 \cdot 7,\ 5 \cdot 7 \cdot 9,\ \cdots$の一般項$a_n=[$10$]$である.
島根県立大学 公立 島根県立大学 2015年 第1問
次の$(1)$~$(6)$の中から$4$つを選択し解答しなさい.

(1)$403a^4-2015a^2+1612$を因数分解しなさい.
(2)$\displaystyle \frac{1}{2}x-y=-4$,$ax-y=14$,$3x+y=46$が点$\mathrm{P}$で交わるとき,点$\mathrm{P}$の座標と定数$a$の値を求めなさい.
(3)$\sqrt{n^2+35}$が自然数となるような自然数$n$をすべて求めなさい.
(4)$3$点$\mathrm{A}(-2,\ -2)$,$\mathrm{B}(1,\ 5)$,$\mathrm{C}(3,\ 1)$を頂点とする三角形の面積を求めなさい.
(5)$12$人の学生を$4$人ずつ$3$グループに分ける分け方は何通りあるか答えなさい.
(6)$\triangle \mathrm{ABC}$において,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{P}$,辺$\mathrm{AC}$を$3:2$に内分する点を$\mathrm{Q}$とする.直線$\mathrm{PQ}$と辺$\mathrm{BC}$の延長が交わる点を$\mathrm{R}$とするとき,$\mathrm{PR}:\mathrm{RQ}$を求めなさい.
北九州市立大学 公立 北九州市立大学 2015年 第3問
$xy$平面上で原点$\mathrm{O}$を中心とする半径$1$の円$C$と点$\mathrm{A}(-1,\ 0)$を考える.また,円$C$上で点$\mathrm{A}$と異なる点を$\mathrm{P}(\cos 2\theta,\ \sin 2\theta)$とおく.ただし,$\theta$は$\displaystyle -\frac{\pi}{2}<\theta<\frac{\pi}{2}$を満たす.線分$\mathrm{AP}$の中点を$\mathrm{M}$とし,線分$\mathrm{AP}$の垂直$2$等分線と円$C$の交点を各々$\mathrm{Q}$,$\mathrm{R}$とする.ただし,$2$点$\mathrm{Q}$,$\mathrm{R}$は,円$C$上に反時計回りに$\mathrm{ARPQ}$の順に並ぶようにとる.以下の問題に答えよ.

(1)中点$\mathrm{M}$の座標を$\theta$を用いて表せ.
(2)$2$点$\mathrm{Q},\ \mathrm{R}$の座標を$\theta$を用いて表せ.
(3)線分$\mathrm{QR}$の長さを求めよ.また,線分$\mathrm{AP}$の長さを$\theta$を用いて表せ.
(4)四角形$\mathrm{ARPQ}$の面積を$S$とおく.面積$S$を$\theta$を用いて表せ.また,面積$S$が最大となるとき,$\theta$の値と面積$S$を求めよ.
(5)$\triangle \mathrm{APQ}$と$\triangle \mathrm{ARP}$の面積を$\theta$を用いて表せ.
北九州市立大学 公立 北九州市立大学 2015年 第1問
以下の問いの空欄$[ア]$~$[ケ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)$x$および$y$は実数とする.点$(x,\ y)$が$x^2+2y^2=2$を満たすとき,$\displaystyle \frac{1}{2}x+y^2$の最大値は$[ア]$,最小値は$[イ]$となる.
(2)半径$r$の円に内接する正$12$角形を考える.この正$12$角形の$1$辺の長さを$1$とすると,円の半径$r$の値は$[ウ]$,正$12$角形の面積は$[エ]$である.
(3)大きさの異なる$3$種類の無地のタイルがある.タイルは長方形で,縦と横の長さがそれぞれ$2 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$3 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$,$5 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$である.$15 \, \mathrm{cm} \times 9.5 \, \mathrm{cm}$の長方形の壁にタイルを隙間なく,はみ出ないように貼り付けるとき,$[オ]$通りの貼り付け方が存在する.必ずしも$3$種類すべてのタイルを使わなくてもよいものとする.また,タイルは切断できないものとする.
(4)$\displaystyle x=\frac{2}{\sqrt{5}+1},\ y=\frac{2}{\sqrt{5}-1}$のとき,$x^3+x^2y+xy^2+y^3$の値は$[カ]$,$x^6+y^6$の値は$[キ]$となる.
(5)赤玉が$3$個,白玉が$5$個入っている袋から同時に$4$個の玉を取り出す.このとき,取り出された玉がすべて白玉となる確率は$[ク]$である.少なくとも$2$個の赤玉が取り出される確率は$[ケ]$である.
北九州市立大学 公立 北九州市立大学 2015年 第2問
以下の問いの空欄$[サ]$~$[ヌ]$に入れるのに適する数値,式を解答箇所に記せ.証明や説明は必要としない.

(1)整式$P(x)$を$x^2-1$で割ると$1$余り,$x^2+4x+4$で割ると$x+6$余る.$P(x)$を$x^2+x-2$で割ったときの余りを$ax+b$とする.このとき,定数$a,\ b$の値は$a=[サ]$,$b=[シ]$となる.
(2)点$(1,\ 2)$に関して,円$x^2+y^2-8x+10y+k=0$と対称な円が原点を通るように定数$k$を定めると,$k=[ス]$となり,対称な円の中心は$([セ],\ [ソ])$となる.
(3)$\displaystyle \sin \theta-\cos \theta=\frac{1}{2}$のとき,$\sin 2\theta$の値は$[タ]$となり,$\cos^3 \theta-\sin^3 \theta$の値は$[チ]$となる.
(4)$3 \leqq x \leqq 81$のとき,関数$y=(\log_3 x)^2-\log_3 x^4+5$の最大値と最小値を求めると,$x=[ツ]$のときに最大値$[テ]$をとり,$x=[ト]$のときに最小値$[ナ]$をとる.
(5)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,$S_n=n^2+8n$で表されるとき,初項$a_1$は$[ニ]$であり,一般項$a_n$は$[ヌ]$である.
北九州市立大学 公立 北九州市立大学 2015年 第3問
半径$1$の円を底面とする高さ$2$の円柱がある.下図のように,ひとつの底面を$xy$平面にとり,その中心を原点$\mathrm{O}$にとる.点$\displaystyle \mathrm{A} \left( -\frac{1}{\sqrt{2}},\ 0,\ 0 \right)$および点$\displaystyle \mathrm{B} \left( 0,\ 0,\ \frac{1}{\sqrt{2}} \right)$を通り,$xy$平面と${45}^\circ$の角をなす平面で,円柱を$2$つの立体に分ける.以下の問いに答えよ.

(1)平面$x=a$(ただし,$\displaystyle -\frac{1}{\sqrt{2}} \leqq a \leqq 1$)で小さい方の立体を切ったときの切り口(長方形$\mathrm{PQRS}$)の面積$S(a)$を求めよ.
(2)小さい方の立体の体積$V$を求めよ.
(図は省略)
尾道市立大学 公立 尾道市立大学 2015年 第1問
次の問いに答えなさい.

(1)$x,\ y$の多項式$x^3y+x^2y^2+x^2y+x^2+xy^2+xy+x+y$を因数分解しなさい.
(2)$\displaystyle x=\frac{1}{\sqrt{7}+\sqrt{6}},\ y=\frac{1}{\sqrt{7}-\sqrt{6}}$のとき$(1)$の多項式$x^3y+x^2y^2+x^2y+x^2+xy^2+xy+x+y$の値を求めなさい.
(3)$a<0$とし,$2$次方程式$ax^2-(a^2+a+1)x-2a-4=0$の解を$\alpha,\ \beta (\alpha<\beta)$とする.このとき$2$つの解$\alpha,\ \beta$が$-2<\alpha<-1$かつ$-1<\beta<0$を満たすような$a$の範囲を求めなさい.
高崎経済大学 公立 高崎経済大学 2015年 第2問
$x,\ y$を実数とする.$3^x=2^y=a$,$\displaystyle \frac{1}{x}+\frac{1}{3y}=\frac{2}{3}$を満たす実数$a$を求めよ.
高崎経済大学 公立 高崎経済大学 2015年 第3問
$k$は定数とし,$k>0$とする.関数
\[ f(x)=(x+1)^3-\frac{3}{2}k(x+1)^2+2 \]
について次の各問に答えよ.

(1)$f(x)$の極大値および極小値と,そのときの$x$の値を求めよ.
(2)すべての$x \geqq 0$に対して,$f(x) \geqq 0$が成り立つ$k$の値の範囲を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第2問
次の問いに答えよ.

(1)$x \geqq 0$のとき,$\displaystyle x-\frac{x^2}{2} \leqq \log (1+x) \leqq x$が成り立つことを示せ.
(2)自然数$n$に対して,
\[ S_n=\log (n \sqrt{n}+1)+\log (n \sqrt{n}+\sqrt{2})+\cdots +\log (n \sqrt{n}+\sqrt{n})-n \log (n \sqrt{n}) \]
と定めるとき,極限値$\displaystyle \lim_{n \to \infty} S_n$を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。