タグ「分数」の検索結果

145ページ目:全4648問中1441問~1450問を表示)
会津大学 公立 会津大学 2015年 第1問
次の空欄をうめよ.

(1)次の積分を求めよ.

(i) $\displaystyle \int_0^1 \log (2x+1) \, dx=[イ]$

(ii) $\displaystyle \int_0^{\frac{\pi}{2}} \cos^3 x \, dx=[ロ]$

(iii) $\displaystyle \int_0^\pi |\sin 2x| \, dx=[ハ]$

(2)次の極限を求めよ.
\[ \lim_{n \to \infty} \left( \frac{1}{1 \cdot 3}+\frac{1}{2 \cdot 4}+\frac{1}{3 \cdot 5}+\cdots +\frac{1}{n(n+2)} \right)=[ニ] \]
(3)方程式$\displaystyle \log_2 (x-10)=3+\log_2 \frac{3}{x}$の解は$x=[ホ]$である.
(4)$0 \leqq x<2\pi$において,$-\sin x+\sqrt{3} \cos x$は$x=[ヘ]$のとき,最大値$[ト]$をとる.
(5)以下の文章に「必要条件である」,「十分条件である」,「必要十分条件である」,「必要条件でも十分条件でもない」のうち最も適するものを入れよ.ただし,$n$は自然数とする.

(i) $n$が$6$の倍数であることは,$n$が$3$の倍数であるための$[チ]$.
(ii) $n$が奇数であることは,$n^2$が奇数であるための$[リ]$.
京都府立大学 公立 京都府立大学 2015年 第3問
関数$\displaystyle f(x)=\frac{4}{3}x^3+2x^2+2x+1$と関数$\displaystyle g(x)=\frac{2}{3}x^4+\frac{4}{3}x^3+2x^2+2x+1$がある.方程式$f(x)=0$の実数解を$\alpha$とするとき,以下の問いに答えよ.

(1)$-1<\alpha<0$であることを示せ.
(2)$g(x)$の最小値を$\alpha$を用いて多項式で表せ.
兵庫県立大学 公立 兵庫県立大学 2015年 第2問
放物線$C:y=x^2$上の点$\mathrm{A}(a,\ a^2)$における$C$の接線$\ell_T$,さらに,点$\mathrm{A}$を通り,$\ell_T$に直交する直線(法線)$\ell_N$を考える.また,法線$\ell_N$に関して直線$x=a$と対称な直線を$\ell_R$とする.次の問に答えなさい.

(1)接線$\ell_T$と$x$軸のなす角を$\theta$とする.ただし,$a>0$の範囲では$\displaystyle 0<\theta<\frac{\pi}{2}$とする.$a>0$のとき,$\displaystyle \tan \left( \frac{\pi}{2}+2\theta \right)$を$a$を用いて表しなさい.
(2)直線$\ell_R$は$a$の値によらず定点を通ることを示しなさい.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第2問
次の問いに答えよ.

(1)$a$は実数で$0 \leqq a \leqq \pi$とする.
\[ 0 \leqq \theta \leqq \pi,\quad \sin \left( \frac{\pi}{4}a^2+\frac{\pi}{4} \right)+\cos \theta=0 \]
を満たす$\theta$を求めよ.
(2)連立不等式
\[ 0 \leqq x \leqq \pi,\quad 0 \leqq y \leqq \pi,\quad \sin \left( \frac{\pi}{4}x^2+\frac{\pi}{4} \right)+\cos y \geqq 0 \]
によって表される$xy$平面上の領域を図示せよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2015年 第4問
あるバクテリアをある条件の下で培養した場合,生存している$1$個が,$1$時間後には$1$回分裂して$2$個ともに生存しているか,あるいは死滅しているかであり,$2$個とも生存している確率が$p$,死滅している確率が$1-p$であるという.このバクテリアがこの条件の下で最初$1$個生存していたとき,$n$時間後に$1$個以上生存している確率を$P_n$とおく.ただし,$n$は自然数とする.

(1)$P_2,\ P_3$をそれぞれ$p$の式で表せ.
(2)$P_{n+1}$を$p$と$P_n$の式で表せ.
(3)$\displaystyle p=\frac{1}{3}$のときの$\displaystyle \lim_{n \to \infty}P_n$を求めよ.
(4)$a$を$2$より大きな実数とする.$\displaystyle p=\frac{a-1}{a}$,$\displaystyle Q_n=P_n-\frac{a-2}{a-1}$としたとき,$0<Q_{n+1}<Q_n$であることを示せ.
(5)$p$が$(4)$と同じときの$\displaystyle \lim_{n \to \infty}P_n$を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第2問
異なる$n$個のものから異なる$r$個を取り出して並べる順列の総数
\[ \perm{n}{r}=n(n-1)(n-2) \cdots (n-r+1) \qquad \text{(ただし$n \geqq r \geqq 1$)} \]
に関して以下の問いに答えよ.

(1)$k>r$ならば$\displaystyle \perm{k}{r}=\frac{1}{r+1}(\perm{k+1}{r+1}-\perm{k}{r+1})$が成り立つことを示せ.
(2)$\displaystyle \perm{r}{r}+\perm{r+1}{r}+\perm{r+2}{r}+\cdots +\perm{n+r-1}{r}=\frac{\perm{n+r}{r+1}}{r+1}$が成り立つことを示せ.
(3)次の等式がすべての自然数$k$に対して成り立つような定数$A,\ B,\ C$を求めよ.
\[ k^4=\perm{k+3}{4}+A \times \perm{k+2}{3}+B \times \perm{k+1}{2}+C \times \perm{k}{1} \]
(4)$\displaystyle \frac{1^4+2^4+3^4+\cdots +n^4}{1+2+3+\cdots +n}$を$n$の$3$次式で表せ.
大阪府立大学 公立 大阪府立大学 2015年 第4問
実数全体を定義域とする関数$f(x),\ g(x)$をそれぞれ
\[ f(x)=e^x,\quad g(x)=\frac{e^{x+1}+e^{-x-1}}{2} \]
で定める.曲線$y=f(x)$上の点$(t,\ e^t)$における法線に関して,直線$x=t$を対称移動した直線を$\ell$とする.このとき,以下の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$は曲線$y=g(x)$に接することを示し,その接点の$x$座標を求めよ.
(3)$(2)$で求めた接点を$\mathrm{P}$とする.$\ell$と曲線$y=f(x)$,および$\mathrm{P}$を通り$y$軸に平行な直線で囲まれた部分の面積を$S(t)$とする.$t$が実数全体を動くとき,$S(t)$の最小値を求めよ.
大阪府立大学 公立 大阪府立大学 2015年 第2問
異なる$n$個のものから異なる$r$個を取り出して並べる順列の総数
\[ \perm{n}{r}=n(n-1)(n-2) \cdots (n-r+1) \qquad \text{(ただし$n \geqq r \geqq 1$)} \]
に関して以下の問いに答えよ.

(1)$k>r$ならば$\displaystyle \perm{k}{r}=\frac{1}{r+1}(\perm{k+1}{r+1}-\perm{k}{r+1})$が成り立つことを示せ.
(2)$\displaystyle \perm{r}{r}+\perm{r+1}{r}+\perm{r+2}{r}+\cdots +\perm{n+r-1}{r}=\frac{\perm{n+r}{r+1}}{r+1}$が成り立つことを示せ.
(3)次の等式がすべての自然数$k$に対して成り立つような定数$A,\ B,\ C$を求めよ.
\[ k^4=\perm{k+3}{4}+A \times \perm{k+2}{3}+B \times \perm{k+1}{2}+C \times \perm{k}{1} \]
(4)$\displaystyle \frac{1^4+2^4+3^4+\cdots +n^4}{1+2+3+\cdots +n}$を$n$の$3$次式で表せ.
福岡女子大学 公立 福岡女子大学 2015年 第4問
どの頂角も${180}^\circ$より小さい四角形$\mathrm{ABCD}$(図$1$)があり,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{W}$とする.この四角形を$2$つの三角形$\triangle \mathrm{ABC}$と$\triangle \mathrm{ACD}$に分割し(図$2$),それぞれの三角形の重心を$\mathrm{G}_1$,$\mathrm{G}_1^\prime$とする.また,同じ四角形を$2$つの三角形$\triangle \mathrm{ABD}$と$\triangle \mathrm{BCD}$に分割し(図$3$),それぞれの三角形の重心を$\mathrm{G}_2$,$\mathrm{G}_2^\prime$とする.さらに線分$\mathrm{G}_1 \mathrm{G}_1^\prime$と線分$\mathrm{G}_2 \mathrm{G}_2^\prime$の交点を$\mathrm{G}$とする.実数$l,\ m$は
\[ \overrightarrow{\mathrm{AC}}=l \overrightarrow{\mathrm{AB}}+m \overrightarrow{\mathrm{AD}} \]
を満たすとする.以下の問に答えなさい.

(1)$\overrightarrow{\mathrm{AG}_1}$,$\overrightarrow{\mathrm{AG}_1^\prime}$,$\overrightarrow{\mathrm{AG}_2}$はそれぞれ,
\[ \overrightarrow{\mathrm{AG}_1}=\frac{1}{3}(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AC}}),\quad \overrightarrow{\mathrm{AG}_1^\prime}=\frac{1}{3}(\overrightarrow{\mathrm{AC}}+\overrightarrow{\mathrm{AD}}),\quad \overrightarrow{\mathrm{AG}_2}=\frac{1}{3}(\overrightarrow{\mathrm{AB}}+\overrightarrow{\mathrm{AD}}) \]
となるが,$\overrightarrow{\mathrm{AG}_2^\prime}$を$\overrightarrow{\mathrm{AB}}$,$\overrightarrow{\mathrm{AC}}$,$\overrightarrow{\mathrm{AD}}$を用いて表しなさい.
(2)$0<p_1<1,\ 0<p_2<1$に対して,線分$\mathrm{G}_1 \mathrm{G}_1^\prime$を$p_1:1-p_1$に内分する点を$\mathrm{H}_1$とし,線分$\mathrm{G}_2 \mathrm{G}_2^\prime$を$p_2:1-p_2$に内分する点を$\mathrm{H}_2$とする.このとき,


$\overrightarrow{\mathrm{AH}_1}=(1-p_1) \overrightarrow{\mathrm{AG}_1}+p_1 \overrightarrow{\mathrm{AG}_1^\prime}$
$\overrightarrow{\mathrm{AH}_2}=(1-p_2) \overrightarrow{\mathrm{AG}_2}+p_2 \overrightarrow{\mathrm{AG}_2^\prime}$


となるが,特に$\mathrm{H}_1=\mathrm{H}_2=\mathrm{G}$としたとき,$p_1,\ p_2$を$l,\ m$を用いて表しなさい.
(3)$(2)$と同じく$\mathrm{H}_1=\mathrm{H}_2=\mathrm{G}$としたとき,以下の式が成り立つことを示しなさい.
\[ \frac{\mathrm{G}_1^\prime \mathrm{G}}{\mathrm{G}_1 \mathrm{G}}=\frac{m}{l}=\frac{\mathrm{BW}}{\mathrm{DW}} \]
(図は省略)
福岡女子大学 公立 福岡女子大学 2015年 第3問
関数
\[ f(x)=\frac{2}{x-1}-\frac{1}{x-2} \quad (x \neq 1,\ x \neq 2) \]
について,以下の問に答えなさい.

(1)$2$つの関数$\displaystyle y=\frac{2}{x-1} (x \neq 1)$と$\displaystyle y=-\frac{1}{x-2} (x \neq 2)$のグラフの概形を同じ座標平面上に描きなさい.
(2)$f(x)$の増減表を作成し,$f(x)$の極小値が$3+2 \sqrt{2}$,極大値が$3-2 \sqrt{2}$となることを示しなさい.
(3)関数$y=f(x)$のグラフの概形を座標平面上に描きなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。