タグ「分数」の検索結果

14ページ目:全4648問中131問~140問を表示)
香川大学 国立 香川大学 2016年 第3問
平面上の三角形$\mathrm{ABC}$は,$\mathrm{AB}=2$,$\mathrm{AC}=3$,$\angle \mathrm{BAC}={60}^\circ$を満たしているとする.また,平面上の動点$\mathrm{P}$に対し実数$f(\mathrm{P})$を
\[ f(\mathrm{P})=\overrightarrow{\mathrm{AP}} \cdot \overrightarrow{\mathrm{BP}}+\overrightarrow{\mathrm{BP}} \cdot \overrightarrow{\mathrm{CP}}+\overrightarrow{\mathrm{CP}} \cdot \overrightarrow{\mathrm{AP}} \]
で定める.このとき,次の問に答えよ.

(1)三角形$\mathrm{ABC}$の重心を$\mathrm{G}$とするとき,$f(\mathrm{G})$の値を求めよ.
(2)$\displaystyle f(\mathrm{P})=\frac{8}{3}$となる点$\mathrm{P}$の全体は円になることを示せ.
(3)点$\mathrm{P}$が平面全体を動くとき,$f(\mathrm{P})$のとりうる値の範囲を求めよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$a,\ b,\ c$および$d$は実数で,$a>0$,$b<0$,$d \neq 0$とする.また
\[ f(x)=ax+b,\quad g(x)=x^2+cx+d \]
とおく.$xyz$空間内に$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$があり,点$\mathrm{O}$は原点を表す.点$\mathrm{P}_0(-4,\ 0,\ 4 \sqrt{3})$は定点で,$\mathrm{P}_1$と$\mathrm{P}_2$はそれぞれ実数$t$の値に応じて定まる点$\mathrm{P}_1(-t,\ f(t),\ 2 \sqrt{3})$,$\mathrm{P}_2(t,\ g(t),\ 0)$である.この$3$点$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$が次の$3$条件をみたしているとき,定数$a,\ b,\ c,\ d$の値をすべて求めなさい.


(i) $t=0$のとき,ベクトル$\overrightarrow{\mathrm{OP}}_1$と$\overrightarrow{\mathrm{OP}}_2$のなす角は$\displaystyle \frac{\pi}{3}$である.
(ii) ベクトル$\overrightarrow{\mathrm{OP}}_1$の長さの最小値は$\sqrt{14}$である.
(iii) 点$\mathrm{O}$,$\mathrm{P}_0$,$\mathrm{P}_1$,$\mathrm{P}_2$は,$t=1$および$t=-3$のとき,それぞれ同一平面上にある.
信州大学 国立 信州大学 2016年 第5問
$n$を自然数とする.以下の問いに答えよ.

(1)$\displaystyle \int_0^1 (1-x^2)^n \, dx=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.

(2)$\displaystyle \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{(-1)^k}{2k+1}=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.
信州大学 国立 信州大学 2016年 第1問
$n$を$2$以上の自然数とする.$n$人でじゃんけんをする.各人はグー,チョキ,パーをそれぞれ$\displaystyle \frac{1}{3}$の確率で出すものとする.勝者が$1$人に決まるまでじゃんけんを繰り返す.ただし,負けた人はその後のじゃんけんには参加しない.このとき,以下の問いに答えよ.

(1)$1$回目のじゃんけんで,勝者がただ$1$人に決まる確率を求めよ.
(2)$1$回目のじゃんけんで,あいこになる確率を求めよ.
(3)$n=5$のとき,ちょうど$2$回のじゃんけんで,勝者がただ$1$人に決まる確率を求めよ.
信州大学 国立 信州大学 2016年 第2問
半直線$\ell:y=x (x \geqq 0)$,放物線$\displaystyle C:y=\frac{\sqrt{2}}{4}x^2+\frac{\sqrt{2}}{2}$を考える.以下の問いに答えよ.

(1)放物線$C$と半直線$\ell$が接する点の座標を求めよ.
(2)$t \geqq 0$とする.原点からの距離が$t$である$\ell$上の点を$\mathrm{A}(t)$とするとき,$\mathrm{A}(t)$を通り$\ell$に直交する直線と,放物線$C$の共有点の座標を$t$を用いて表せ.
(3)放物線$C$と半直線$\ell$および$y$軸とで囲まれた図形を,半直線$\ell$のまわりに$1$回転してできる回転体の体積を求めよ.
信州大学 国立 信州大学 2016年 第3問
$n$を自然数とする.以下の問いに答えよ.

(1)$\displaystyle \int_0^1 (1-x^2)^n \, dx=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.

(2)$\displaystyle \sum_{k=0}^n \frac{n!}{k!(n-k)!} \frac{(-1)^k}{2k+1}=\frac{4^n(n!)^2}{(2n+1)!}$を示せ.
岩手大学 国立 岩手大学 2016年 第4問
曲線$y=-x^3+3x^2+x-3$を$C$とし,曲線$C$上の点$(3,\ 0)$における接線を$\ell$とする.このとき,次の問いに答えよ.

(1)接線$\ell$の方程式を求めよ.
(2)$p$を実数とし,点$(p,\ q_1)$は接線$\ell$上にあり,点$(p,\ q_2)$は曲線$C$上にあるとする.$p<3$の範囲を$p$が動くとき,$q_1-q_2$の最大値を求めよ.
(3)接線$\ell$と曲線$C$で囲まれた図形は,$y$軸によって$2$つの部分に分けられるが,それらの面積のうち小さい方を$S$,大きい方を$T$とするとき,$\displaystyle \frac{T}{S}$の値を求めよ.
福島大学 国立 福島大学 2016年 第1問
次の問いに答えなさい.

(1)次の方程式を解きなさい.
\[ \sqrt{5-2x}-x+2=0 \]
(2)次の不等式を満たす$t$の範囲を$\log_{10}2$を用いて求めなさい.
\[ \left( \frac{1}{2} \right)^{\frac{t}{30}}<\frac{1}{10} \]
(3)次の関数を微分しなさい.
\[ y=x^2 \log_e x \]
(4)次の定積分の値を求めなさい.
\[ \int_0^1 xe^{-\frac{1}{2}x^2} \, dx \]
福島大学 国立 福島大学 2016年 第2問
次の問いに答えなさい.

(1)連立不等式$\left\{ \begin{array}{l}
y \leqq -x^2+4 \\
y \geqq -\displaystyle\frac{1}{2}x+1
\end{array} \right.$の表す領域を図示しなさい.

(2)点$(x,\ y)$が$(1)$の領域を動くとき,$x+y$のとりうる値の最大値と最小値を求めなさい.
福島大学 国立 福島大学 2016年 第3問
$t$を$\displaystyle t+\frac{1}{t}=\sqrt{2}$を満たす数とし,$\displaystyle A_n=t^n+\frac{1}{t^n}$($n$は自然数)とするとき,次の問いに答えなさい.

(1)$A_2,\ A_3,\ A_4$の値を求めなさい.
(2)$n \geqq 2$のとき,$A_{n+1}$を$A_n,\ A_{n-1}$を用いて表しなさい.
(3)$n \geqq 3$のとき,$A_{n+2}$を$A_{n-2}$を用いて表しなさい.
(4)$A_n$のとりうる値をすべて求めなさい.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。