タグ「分数」の検索結果

120ページ目:全4648問中1191問~1200問を表示)
同志社大学 私立 同志社大学 2015年 第3問
$\theta_1,\ \theta_2,\ a,\ b$は$\displaystyle 0<\theta_1<\theta_2<\frac{\pi}{2}$,$0<a<b$を満たす実数とする.連立不等式
\[ a^2 \leqq x^2+y^2 \leqq b^2,\quad 0 \leqq y \leqq (\tan \theta_1)x \]
の表す領域を$D$とし,連立不等式
\[ a^2 \leqq x^2+y^2 \leqq b^2,\quad (\tan \theta_1)x \leqq y \leqq (\tan \theta_2)x \]
の表す領域を$E$とする.次の問いに答えよ.

(1)$D$を$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
(2)$E$を$x$軸のまわりに$1$回転してできる回転体の体積$W$を求めよ.
(3)極限値$\displaystyle \lim_{\theta_2 \to \theta_1+0} \frac{W}{\theta_2-\theta_1}$を求めよ.
東洋大学 私立 東洋大学 2015年 第1問
次の各問に答えよ.

(1)$2$次方程式$3x^2+x+a=0$($a$は定数)の解が$\sin \theta,\ \cos \theta$のとき,
\[ \sin^3 \theta+\cos^3 \theta=-\frac{[アイ]}{[ウエ]} \]
である.
(2)$2^x=3$,$3^y=5$,$xyz=3$のとき,$5^z=[オ]$である.
(3)関数$f(x)=(x-2)(x-1)(x+1)(x+2)$は,$0 \leqq x \leqq 2$の範囲において,$x=[カ]$で最大値$[キ]$をとり,$\displaystyle x=\sqrt{\frac{[ク]}{[ケ]}}$で最小値$\displaystyle -\frac{[コ]}{[サ]}$をとる.
(4)直線$y=mx+4$($m$は正の定数)が円$x^2+y^2=36$によって切りとられる弦の長さが$4 \sqrt{6}$のとき,$\displaystyle m=\frac{\sqrt{[シ]}}{[ス]}$である.
(5)$x^6$を$x^2-x-3$で割ったときの余りは$[セソ]x+[タチ]$である.
東洋大学 私立 東洋大学 2015年 第4問
一般項が$\displaystyle a_n=\sin \frac{3n \pi}{7}$で定義される数列$\{a_n\}$の最初の$n$項の和を$\displaystyle S_n=\sum_{k=1}^n a_k$とおく.次の各問に答えよ.

(1)$a_n>0$となるための必要十分条件は,$n$を$[アイ]$で割った余りが$1$,$2$,$[ウ]$,$[エ]$,$[オカ]$,$[キク]$のいずれかとなることである.ただし,$[ウ]<[エ]<[オカ]<[キク]$とする.
(2)任意の自然数$n$に対し,$a_{n+\mkakko{ケ}}=-a_n$が成り立つ.
(3)$a_n$が最大となるための必要十分条件は,$n$を$[コサ]$で割った余りが$[シ]$または$[ス]$となることである.ただし,$[シ]<[ス]$とする.
(4)$S_n$が最大となるための必要十分条件は,$n$を$[セソ]$で割った余りが$[タ]$または$[チツ]$となることである.
北里大学 私立 北里大学 2015年 第1問
次の$[ ]$にあてはまる答を記せ.

(1)$k$を定数とするとき,方程式$\sqrt{4x-3}=x+k$の実数解の個数が$2$個となる$k$の値の範囲は$[ア]$,実数解の個数が$1$個となる$k$の値の範囲は$[イ]$である.また,曲線$y=\sqrt{4x-3}$と直線$y=x$で囲まれた部分を,$x$軸の周りに$1$回転させてできる立体の体積は$[ウ]$である.
(2)曲線$y=kx^3-1$と曲線$y=\log x$が共有点をもち,その点において共通の接線をもつとするとき,定数$k$の値は$[エ]$,共通の接線の方程式は$y=[オ]$である.
(3)数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\{a_n\}$は
\[ a_1=1,\quad a_{n+1}=S_n+n^2+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
を満たす.このとき,$a_4=[カ]$であり,$\{a_n\}$の一般項は$a_n=[キ]$である.また,$S_n=[ク]$である.
(4)$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{AC}=4$,$\displaystyle \angle \mathrm{A}=\frac{\pi}{3}$である.$\triangle \mathrm{ABC}$の外心を$\mathrm{O}$とする.$\overrightarrow{\mathrm{AB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AC}}=\overrightarrow{c}$とおく.

(i) $\triangle \mathrm{ABC}$の外接円の半径は$[ケ]$である.
(ii) $\overrightarrow{\mathrm{AO}}$を$\overrightarrow{b}$と$\overrightarrow{c}$を用いて表すと$\overrightarrow{\mathrm{AO}}=[コ] \overrightarrow{b}+[サ] \overrightarrow{c}$である.
(iii) 直線$\mathrm{BO}$と辺$\mathrm{AC}$の交点を$\mathrm{P}$とするとき,$\mathrm{AP}:\mathrm{PC}$は$[シ]$である.

(5)$\mathrm{X}$君と$\mathrm{Y}$さんは,毎日正午に次の規則にしたがって食事をとる.

(i) 食堂$\mathrm{A}$,食堂$\mathrm{B}$,食堂$\mathrm{C}$のいずれかで食事をとる.
(ii) 食堂は前日とは異なる$2$つの食堂のうちの$1$つを無作為に選ぶ.
(iii) $2$人が同じ食堂を選んだ日は,必ず一緒に食事をとる.

$1$日目,$2$人は別々の食堂で食事をとったとする.このとき,$3$日目に初めて$2$人が一緒に食事をとる確率は$[ス]$である.また,$2$人が一緒に食事をとる$2$回目の日が$7$日目となる確率は$[セ]$である.
愛知工業大学 私立 愛知工業大学 2015年 第1問
次の$[ ]$を適当に補え.

(1)$x^2-2x-7<0$をみたす実数$x$の範囲は$[ア]$である.また,実数$x$に対して,$x$を超えない最大の整数を$[x]$とすると,${[x]}^2-2[x]-7<0$をみたす実数$x$の範囲は$[イ]$である.
(2)数列$\{a_n\}$は関係式
\[ a_1=1,\quad a_2=\frac{4}{3},\quad 3a_{n+2}-4a_{n+1}+a_n=0 \quad (n=1,\ 2,\ 3,\ \cdots) \]
をみたすとする.このとき,数列$\{a_{n+1}-pa_n\}$が公比$q$の等比数列になるような定数$p,\ q$の組は$(p,\ q)=[ウ]$であり,一般項$a_n$は$a_n=[エ]$である.
(3)$\displaystyle \frac{\cos \theta-\sin \theta}{\cos \theta+\sin \theta}=\sqrt{3}-2$となるのは$\tan \theta=[オ]$のときであり,これをみたす$\displaystyle \theta \left( 0<\theta<\frac{\pi}{2} \right)$の値は$\theta=[カ]$である.
(4)$a$を実数とし,$\displaystyle f(a)=\int_{-1}^2 {(x-a |x|)}^2 \, dx$とする.$f(a)$は$a=[キ]$のとき,最小値$[ク]$をとる.
(5)$\tan x=t$とおくとき,$\sin 2x$を$t$で表すと$\sin 2x=[ケ]$である.また,$\displaystyle \int_{\frac{\pi}{4}}^{\frac{\pi}{3}} \frac{1}{\sin 2x} \, dx=[コ]$である.

\mon[(注)] 次の$(6),\ (7)$は選択問題である.

(6)大小$2$つのさいころを投げて,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.$2$次方程式$x^2+ax+b=0$が$2$つの異なる実数解をもつ確率は$[サ]$,重解をもつ確率は$[シ]$,実数解をもたない確率は$[ス]$である.
(7)平面上で,半径$3$の円$C_1$と半径$5$の円$C_2$が点$\mathrm{P}$で外接している.$1$本の直線が$\mathrm{P}$と異なる点$\mathrm{Q}$,$\mathrm{R}$で円$C_1,\ C_2$とそれぞれ接しているとき,$\mathrm{QR}=[セ]$である.また,直線$\mathrm{QP}$と円$C_2$との,$\mathrm{P}$と異なる交点を$\mathrm{S}$とするとき,$\mathrm{SR}=[ソ]$である.
北里大学 私立 北里大学 2015年 第7問
関数$\displaystyle f(x)=x^3-3(a+1)x^2+12ax-12a+\frac{7}{2}$について,以下の問に答えよ.ただし,$a$は定数とする.

(1)方程式$f(x)=0$が異なる$3$個の実数解をもつように定数$a$の値の範囲を定めよ.
(2)方程式$f(x)=0$が異なる$3$個の正の実数解をもつように定数$a$の値の範囲を定めよ.
駒澤大学 私立 駒澤大学 2015年 第1問
次の$[ ]$を埋めよ.

(1)円$x^2+y^2=5$と直線$y=x+k$が共有点をもつとき,定数$k$の範囲は,
\[ -\sqrt{[ア][イ]} \leqq k \leqq \sqrt{[ア][イ]} \]
である.
(2)関数$f(x)=x^3-3x^2-72x+18$の導関数は
\[ f^\prime(x)=[ウ]x^{\mkakko{エ}}-[オ]x-[カ][キ] \]
となる.また,関数$f(x)$は$x=[ク][ケ]$のとき極大値$[コ][サ][シ]$をとり,$x=[ス]$のとき極小値$\kakkofour{セ}{ソ}{タ}{チ}$をとる.
(3)平面上に$3$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(-1,\ 2)$,$\mathrm{B}(1,\ 3)$がある.このとき,


$|\overrightarrow{\mathrm{OA}}|=\sqrt{[ツ]}$,$|\overrightarrow{\mathrm{OB}}|=\sqrt{[テ][ト]}$,

$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=[ナ]$,$\angle \mathrm{AOB}={[ニ][ヌ]}^\circ$


となる.また,$\triangle \mathrm{OAB}$の面積は$\displaystyle \frac{[ネ]}{[ノ]}$である.
東京理科大学 私立 東京理科大学 2015年 第3問
楕円$\displaystyle C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1 (a>b>0)$は次の条件を満たすとする.
\begin{itemize}
楕円$C$は点$\mathrm{A}(0,\ -1)$を通る
楕円$C$の右焦点と直線$x-y+2 \sqrt{2}=0$の距離は$3$である(ただし,楕円の右焦点とは,楕円の$2$つの焦点のうち,$x$座標が正のものをさす.)
\end{itemize}

(1)$a,\ b$の値を求めなさい.
(2)$y$軸上に点$\mathrm{P}(0,\ p)$をとる.点$\mathrm{P}$を通り,次の条件を満たす直線$\ell$が$p$の値によって何本引けるかを調べなさい.
\begin{itemize}
直線$\ell$は楕円$C$と異なる$2$点$\mathrm{M}$,$\mathrm{N}$で交わり,$\mathrm{AM}=\mathrm{AN}$が成り立つ.
\end{itemize}
同志社大学 私立 同志社大学 2015年 第1問
次の$[ ]$に適する数または式を記入せよ.

(1)関数$f(x)=3^x$の導関数は$f^\prime(x)=[ア]$であり,$\displaystyle \int_0^2 f(x) \, dx=[イ]$である.したがって,座標平面内において,点$(1,\ 3)$における曲線$C:y=f(x)$の接線$\ell$の方程式は$y=[ウ]$であり,法線$m$の方程式は$y=[エ]$である.さらに,曲線$C$,接線$\ell$,$y$軸と直線$x=2$で囲まれた部分の面積は$[オ]$であり,法線$m$と$x$軸の交点の座標は$([カ],\ 0)$である.
(2)$1$から$9$までの番号札$9$枚を入れた箱がある.その箱から番号札を$1$枚ずつ$2$回取り出して,その数を順に$x,\ y$とする.ただし,$1$度取り出した札はもとに戻さないとする.$\displaystyle \frac{y}{x}$が整数になる確率は$[キ]$であり,$\displaystyle \frac{y}{x} \leqq \frac{1}{2}$となる確率は$[ク]$であり,$\displaystyle \frac{y}{x} \geqq 3$となる確率は$[ケ]$である.また,$\displaystyle \frac{1}{2}<\frac{y}{x}<3$となる確率は$[コ]$である.
獨協医科大学 私立 獨協医科大学 2015年 第1問
次の問いに答えなさい.

(1)定数$a$を正の実数とする.関数
\[ f(\theta)=4 \sin 2\theta+6 \cos^2 \theta+4a(\sin \theta+2 \cos \theta)+a^2+1 \]
の$0 \leqq \theta \leqq \pi$における最大値を$M$,最小値を$m$とする.
$t=\sin \theta+2 \cos \theta$とおく.$f(\theta)$を$t$を用いて表すと
\[ f(\theta)=[ア]t^2+4at+a^2-[イ] \]
である.
$M=a^2+[ウ] \sqrt{[エ]}a+[オ]$であり,これを与える$\theta$の値を$\theta_0$とすると,$\displaystyle \tan \theta_0=\frac{[カ]}{[キ]}$である.
また,$M-m=14$となる$a$の値は,$a=\sqrt{[ク]}-\sqrt{[ケ]}$である.
(2)定数$m$を正の整数とする.
$xy$平面上に$2$点$\mathrm{A}(21,\ 0)$,$\mathrm{B}(0,\ m)$がある.点$(1,\ 0)$と直線$\mathrm{AB}$との距離を$d$とすると
\[ d=\frac{[コサ]m}{\sqrt{m^2+[シスセ]}} \]
である.
$d$が有理数となるような$m$の値は全部で$[ソ]$個あり,そのうち$m$の値が最大のものは$m=[タチツ]$である.
また,$d$が整数となるとき,$m=[テト]$,$d=[ナニ]$である.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。