タグ「分数」の検索結果

11ページ目:全4648問中101問~110問を表示)
横浜国立大学 国立 横浜国立大学 2016年 第5問
$xy$平面上に楕円$\displaystyle C:\frac{x^2}{4}+y^2=1$がある.次の問いに答えよ.

(1)点$\mathrm{P}(a,\ b)$を通る$C$の接線が$2$本あり,それらが直交するとき,$a,\ b$がみたす条件を求めよ.
(2)$C$に外接する長方形のうち,$x$座標が$1$で$y$座標が正である頂点をもつものの面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第2問
$\displaystyle f(x)=\frac{3^x-1}{3^x+1},\ g(x)=\frac{x^2+4x+1}{2(x^2+x+1)}$とする.次の問いに答えよ.

(1)$g(f(x))=f(2x+1)$が成り立つことを示せ.
(2)数列$\{a_n\}$を
\[ a_1=1,\quad a_{n+1}=2a_n+1 \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定め,数列$\{b_n\}$を
\[ b_1=\frac{1}{2},\quad b_{n+1}=g(b_n) \quad (n=1,\ 2,\ 3,\ \cdots) \]
により定める.

\mon[(ア)] $b_n=f(a_n) (n=1,\ 2,\ 3,\ \cdots)$が成り立つことを数学的帰納法を用いて示せ.
\mon[(イ)] 数列$\{a_n\},\ \{b_n\}$の一般項をそれぞれ求めよ.
\mon[(ウ)] $\displaystyle \lim_{n \to \infty} b_n$を求めよ.
滋賀医科大学 国立 滋賀医科大学 2016年 第3問
$a,\ b$を正の定数とし,$xy$平面上の双曲線
\[ \frac{x^2}{a^2}-\frac{y^2}{b^2}=1 \]
を$H$とする.正の実数$r,\ s$に対して,円$C:(x-s)^2+y^2=r^2$を考える.

(1)$C$の中心が$H$の焦点の一つであるとき,すなわち$s=\sqrt{a^2+b^2}$のとき,$C$と$H$は$x>0$において高々$2$点しか共有点を持たないことを示せ.
(2)$C$と$H$が$x>0$において$4$点の共有点を持つような$(r,\ s)$の範囲を,$rs$平面上に図示せよ.
(3)$C$と$H$が$x>0$において$2$点で接するような$(r,\ s)$を考えるとき,極限$\displaystyle \lim_{r \to \infty} \frac{s}{r}$を求めよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第4問
四面体$\mathrm{OABC}$において,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とし,頂点$\mathrm{O}$から$\triangle \mathrm{ABC}$を含む平面に下ろした垂線の足を$\mathrm{H}$とする.また,四面体$\mathrm{OABC}$は
\[ |\overrightarrow{a|}=|\overrightarrow{b|}=|\overrightarrow{c|}=1,\quad \angle \mathrm{AOB}=\angle \mathrm{BOC}=\frac{\pi}{3} \]
を満たすものとし,$\angle \mathrm{AOC}=\theta \left( 0<\theta<\displaystyle\frac{2}{3} \pi \right)$とする.次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{BA}} \cdot \overrightarrow{\mathrm{BC}}$を求めよ.
(2)$\triangle \mathrm{ABC}$の面積を求めよ.
(3)$\overrightarrow{\mathrm{OH}}=s \overrightarrow{a}+t \overrightarrow{b}+u \overrightarrow{c}$を満たす$s,\ t,\ u$を求めよ.
(4)$|\overrightarrow{\mathrm{OH|}}$を求めよ.
(5)$\displaystyle 0<\theta<\frac{2}{3}\pi$のとき,四面体$\mathrm{OABC}$の体積の最大値を求めよ.
滋賀医科大学 国立 滋賀医科大学 2016年 第2問
分母が奇数,分子が整数の分数で表せる有理数を「控えめな有理数」と呼ぶことにする.例えば$\displaystyle -\frac{1}{3}$,$2$はそれぞれ$\displaystyle \frac{-1}{3},\ \frac{2}{1}$と表せるから,ともに控えめな有理数である.$1$個以上の有限個の控えめな有理数$a_1,\ \cdots,\ a_n$に対して,集合$S \langle a_1,\ \cdots,\ a_n \rangle$を,
\[ S \langle a_1,\ \cdots,\ a_n \rangle=\{x_1a_1+\cdots+x_na_n \;|\; x_1,\ \cdots,\ x_n \ \text{は控えめな有理数} \} \]
と定める.例えば$1$は$\displaystyle 1 \cdot \left( -\frac{1}{3} \right) +\frac{2}{3} \cdot 2$と表せるから,$\displaystyle S \langle -\frac{1}{3},\ 2 \rangle$の要素である.

(1)控えめな有理数$a_1,\ \cdots,\ a_n$が定める集合$S \langle a_1,\ \cdots,\ a_n \rangle$の要素は控えめな有理数であることを示せ.
(2)$0$でない控えめな有理数$a$が与えられたとき,$S \langle a \rangle=S \langle 2^t \rangle$となる$0$以上の整数$t$が存在することを示せ.
(3)控えめな有理数$a_1,\ \cdots,\ a_n$が与えられたとき,$S \langle a_1,\ \cdots,\ a_n \rangle=S \langle b \rangle$となる控えめな有理数$b$が存在することを示せ.
(4)$2016$が属する集合$S \langle a_1,\ \cdots,\ a_n \rangle$はいくつあるか.ただし$a_1,\ \cdots,\ a_n$は控えめな有理数であるとし,$a_1,\ \cdots,\ a_n$と$b_1,\ \cdots,\ b_m$が異なっていても,$S \langle a_1,\ \cdots,\ a_n \rangle=S \langle b_1,\ \cdots,\ b_m \rangle$であれば,$S \langle a_1,\ \cdots,\ a_n \rangle$と$S \langle b_1,\ \cdots,\ b_m \rangle$は一つの集合として数える.
筑波大学 国立 筑波大学 2016年 第2問
$xy$平面の直線$y=(\tan 2 \theta)x$を$\ell$とする.ただし$\displaystyle 0<\theta<\frac{\pi}{4}$とする.図で示すように,円$C_1$,$C_2$を以下の$(ⅰ)$~$\tokeishi$で定める.

(i) 円$C_1$は直線$\ell$および$x$軸の正の部分と接する.
(ii) 円$C_1$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_1$は$\sin 2\theta$である.
(iii) 円$C_2$は直線$\ell$,$x$軸の正の部分,および円$C_1$と接する.
\mon[$\tokeishi$] 円$C_2$の中心は第$1$象限にあり,原点$\mathrm{O}$から中心までの距離$d_2$は$d_1>d_2$を満たす.

円$C_1$と円$C_2$の共通接線のうち,$x$軸,直線$\ell$と異なる直線を$m$とし,直線$m$と直線$\ell$,$x$軸との交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とする.

(1)円$C_1,\ C_2$の半径を$\sin \theta,\ \cos \theta$を用いて表せ.
(2)$\theta$が$\displaystyle 0<\theta<\frac{\pi}{4}$の範囲を動くとき,線分$\mathrm{PQ}$の長さの最大値を求めよ.
(3)$(2)$の最大値を与える$\theta$について直線$m$の方程式を求めよ.
(図は省略)
筑波大学 国立 筑波大学 2016年 第6問
複素数平面上を動く点$z$を考える.次の問いに答えよ.

(1)等式$|z-1|=|z+1|$を満たす点$z$の全体は虚軸であることを示せ.
(2)点$z$が原点を除いた虚軸上を動くとき,$\displaystyle w=\frac{z+1}{z}$が描く図形は直線から$1$点を除いたものとなる.この図形を描け.
(3)$a$を正の実数とする.点$z$が虚軸上を動くとき,$\displaystyle w=\frac{z+1}{z-a}$が描く図形は円から$1$点を除いたものとなる.この円の中心と半径を求めよ.
大阪大学 国立 大阪大学 2016年 第2問
次の問いに答えよ.

(1)$c$を正の定数とする.正の実数$x,\ y$が$x+y=c$をみたすとき,
\[ \left( 1+\frac{1}{x} \right) \left( 1+\frac{1}{y} \right) \]
の最小値を$c$を用いて表せ.
(2)正の実数$x,\ y,\ z$が$x+y+z=1$をみたすとき,
\[ \left( 1+\frac{1}{x} \right) \left( 1+\frac{1}{y} \right) \left( 1-\frac{4}{3z} \right) \]
の最大値を求めよ.
群馬大学 国立 群馬大学 2016年 第2問
次の$6$つの数
\[ \left( \sqrt{10}-\sqrt{3} \right)^{\frac{1}{3}},\quad \log_{\sqrt{3}} \frac{7}{4},\quad \frac{7}{9},\quad \log_7 5,\quad \frac{1}{\log_6 12},\quad \log_{(\sqrt{15}-\sqrt{10})}12 \]
について答えよ.

(1)$6$つの数のうち負の数はどれか,すべて答えよ.
(2)$6$つの数のうち$1$以上の数はどれか,すべて答えよ.
(3)$6$つの数のうち,$(1)$と$(2)$以外の数を左から小さい順に並べよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。