タグ「分数」の検索結果

100ページ目:全4648問中991問~1000問を表示)
浜松医科大学 国立 浜松医科大学 2015年 第4問
$\alpha,\ \beta$を
\[ \alpha=\lim_{n \to \infty} \left( \frac{(3n+1)(3n+2)(3n+3) \cdots (3n+n)}{(n+1)(n+2)(n+3) \cdots (n+n)} \right)^{\frac{1}{n}} \]
および
\[ \beta=\lim_{n \to \infty} \left( \frac{(3n^2+1^2)(3n^2+2^2)(3n^2+3^2) \cdots (3n^2+n^2)}{(n^2+1^2)(n^2+2^2)(n^2+3^2) \cdots (n^2+n^2)} \right)^{\frac{1}{n}} \]
とおく.このとき$\alpha<\beta$を示せ.また,$\alpha$と$\beta$の値をそれぞれ求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第2問
$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$とし,半径を$1$とする.辺$\mathrm{BC}$の中点を$\mathrm{P}$,辺$\mathrm{AB}$を$1:2$に内分する点を$\mathrm{Q}$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$を用いて表せ.
(2)$(1)$における$\overrightarrow{\mathrm{PQ}}$は,$\overrightarrow{a}+\overrightarrow{b}$と平行で向きが同じとする.$|\overrightarrow{\mathrm{PQ}}|:|\overrightarrow{a}+\overrightarrow{b}|=s:1$とするとき,$\overrightarrow{a} \cdot \overrightarrow{c}$と$\overrightarrow{b} \cdot \overrightarrow{c}$を,それぞれ$\overrightarrow{a} \cdot \overrightarrow{b}$と$s$を用いて表せ.
(3)$(2)$において,さらに$\displaystyle s=\frac{1}{6}$であるとき,$\overrightarrow{a} \cdot \overrightarrow{b}$の値を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第3問
$b_1=1,\ b_2=4,\ b_{n+2}=5b_{n+1}-6b_n (n=1,\ 2,\ 3,\ \cdots)$で定められた数列$\{b_n\}$がある.数列$\{a_n\}$が$a_1=1$,$\displaystyle a_{n+1}-a_n=b_n+\frac{1}{n(n+1)}+n (n=1,\ 2,\ 3,\ \cdots)$をみたすとき,次の問いに答えよ.

(1)$p_n=b_{n+1}-2b_n$とおく.数列$\{p_n\}$は等比数列であることを示し,一般項を求めよ.
(2)$q_n=b_{n+1}-3b_n$とおく.数列$\{q_n\}$は等比数列であることを示し,一般項を求めよ.
(3)数列$\{b_n\}$の一般項を求めよ.
(4)数列$\{a_n\}$の一般項を求めよ.
宇都宮大学 国立 宇都宮大学 2015年 第5問
微分可能な関数$f(x)$は,$2$つの条件$f^\prime(x)=xe^x$,$f(1)=0$を満たしている.このとき,次の問いに答えよ.

(1)関数$f(x)$を求めよ.
(2)すべての$x$に対して次の等式を満たす関数$g(x)$を求めよ.
\[ g(x)=f(x)+\frac{(2-x)e^x}{e-1} \int_0^1 g(t) \, dt \]
(3)$g(x)$を$(2)$で求めた関数とし,$k$を定数とする.$x$についての方程式$g(x)=kx$の異なる実数解の個数を調べよ.ただし,$\displaystyle \lim_{x \to \infty} \frac{e^x}{x}=\infty$を用いてよい.
山口大学 国立 山口大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$上に頂点$\mathrm{B}$,$\mathrm{C}$とは異なる点$\mathrm{P}$をとる.$\mathrm{AB}=l$,$\mathrm{AP}=m$,$\angle \mathrm{PAB}=\alpha$,$\angle \mathrm{PAC}=\beta$とするとき,次の問いに答えなさい.

(1)$\triangle \mathrm{ABP}$の面積を$l,\ m,\ \alpha$を用いて表しなさい.
(2)$\mathrm{AC}$の長さおよび$\triangle \mathrm{ABC}$の面積$S$を$l,\ m,\ \alpha,\ \beta$を用いて表しなさい.
(3)次の不等式が成り立つことを示しなさい.
\[ S \geqq \frac{2m^2 \sin \alpha \sin \beta}{\sin (\alpha+\beta)} \]
山口大学 国立 山口大学 2015年 第2問
$\triangle \mathrm{ABC}$において,辺$\mathrm{BC}$上に頂点$\mathrm{B}$,$\mathrm{C}$とは異なる点$\mathrm{P}$をとる.$\mathrm{AB}=l$,$\mathrm{AP}=m$,$\angle \mathrm{PAB}=\alpha$,$\angle \mathrm{PAC}=\beta$とし,$\triangle \mathrm{ABC}$の面積を$S$とするとき,次の問いに答えなさい.

(1)$\mathrm{AC}$を$l,\ m,\ \alpha,\ \beta$を用いて表しなさい.
(2)次の不等式が成り立つことを示しなさい.
\[ S \geqq \frac{2m^2 \sin \alpha \sin \beta}{\sin (\alpha+\beta)} \]
(3)$\triangle \mathrm{ABC}$の重心を$\mathrm{G}$とする.$\displaystyle S=\frac{2m^2 \sin \alpha \sin \beta}{\sin (\alpha+\beta)}$のとき,$\displaystyle \frac{\mathrm{AG}}{\mathrm{PG}}$の値を求めなさい.
宮城教育大学 国立 宮城教育大学 2015年 第1問
$p,\ q$を自然数として,$p>q$とする.等差数列$\{a_n\}$の初項から第$n$項までの和を$S_n$とするとき,$\displaystyle S_p=\frac{p}{q}$,$\displaystyle S_q=\frac{q}{p}$が成り立つとする.次の問に答えよ.

(1)数列$\{a_n\}$の初項と公差を$p,\ q$を用いて表せ.
(2)自然数$m$に対して,数列$\{a_n\}$の初項から第$2^m$項までの和の逆数を$b_m$とする.このとき,数列$\{b_n\}$の初項から第$n$項までの和を求めよ.
(3)$(2)$の数列$\{b_n\}$の初項が$36$であり,数列$\{a_n\}$の第$p+q$項が$\displaystyle \frac{17}{48}$であるとき,$p$と$q$を求めよ.
京都教育大学 国立 京都教育大学 2015年 第3問
正の実数$x,\ y,\ z$に関する,次の$3$つの条件を考える.

$p:2^x=3^y=6^z$
$q:2^x=3^y$
$\displaystyle r:\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$


(1)$p$は$r$の十分条件であることを証明せよ.
(2)$p$は$r$の必要条件ではないことを証明せよ.
(3)$p$は「$q$かつ$r$」の必要条件であることを証明せよ.
京都教育大学 国立 京都教育大学 2015年 第4問
次の$(1),\ (2)$を証明せよ.

(1)$A>0,\ B \geqq 0$であるとき,$A>B$と$A^2>B^2$は同値である.
(2)$|a|<1$かつ$|b|<1$ならば,
\[ 1+ab \neq 0 \;\text{かつ}\; |\displaystyle\frac{a+b|{1+ab}}<1 \]
京都教育大学 国立 京都教育大学 2015年 第5問
$a$は実数であるとする.$x$の関数$f(x)$を,
\[ f(x)=\frac{1}{3}x^3-\frac{a-1}{2}x^2-ax+2 \]
により定義する.
\[ I=\int_0^6 |f^\prime(x)| \, dx \]
が最小になるような$a$の値と,そのときの$I$の値を求めよ.
スポンサーリンク

「分数」とは・・・

 まだこのタグの説明は執筆されていません。