タグ「円」の検索結果

57ページ目:全908問中561問~570問を表示)
山口大学 国立 山口大学 2012年 第1問
$xy$平面上に点$\mathrm{A}(-1,\ 0)$と,原点を中心とする半径1の円$C$を考える.$C$上の点$\mathrm{P}$を通り$x$軸に垂直な直線を$\ell$とし,$\ell$と$x$軸の交点を$\mathrm{Q}$とする.このとき,次の問いに答えなさい.

(1)$\mathrm{P}$の$x$座標を$a$とするとき,$f(a)=\mathrm{AQ}+\mathrm{PQ}$を$a$を用いて表しなさい.
(2)(1)で求めた関数$f(a)$の$-1 \leqq a \leqq 1$における最大値を求めなさい.
浜松医科大学 国立 浜松医科大学 2012年 第2問
$24$時間診療業務を休みなく行う病院において,$40$日間で$1$万個使用される医療材料$\mathrm{A}$について考える.$\mathrm{A}$の使用頻度は常に一定であり,$1$日の時間帯や曜日による変動は全くないものとする.さて,病院における在庫管理では,「品切れ」が起きないこと,「コスト」をできるだけ低くすること,この$2$つが肝要である.医療材料$\mathrm{A}$の保管費は,その保管期間に比例し,$1$個につき$10$日間で$1$円である.また,納入業者に$\mathrm{A}$を注文すれば,注文量の多少に関わらず,品物が届いた時点で$200$円の事務費がかかる.なお,担当者は$\mathrm{A}$の在庫量$y$の時間的推移を把握しており,品切れになる直前という最適のタイミングで,注文した量が届くものとする.われわれは,保管費と事務費の和$S$を最小にするような注文の仕方を求める.以下の問いに答えよ.

(1)$\mathrm{A}$の在庫は最初$1$万個あったとする.そして注文する量は毎回一定として,$x$で表す.このとき,時間$t$による在庫量$y$の変化を表すグラフを,横軸を時間の$t$軸とする座標平面上に図示せよ.(図示する際には,適当な$x$の値を自ら設定すること.)
以下,$1$回目の注文によって品物の届く時点以降の$y$の変化について考察する.
(2)周期的な$y$の変動に留意して,平均在庫量を求めよ.
(3)長期にわたる保管費,事務費の総額をそれぞれ見積もり,保管費と事務費の和$S$の「$1$日当たりの平均コスト」を求めよ.さらに,この$1$日当たりの平均コストを最小にするような$x$の値を求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第3問
$n$は自然数を表すとして,以下の問いに答えよ.

(1)平面を次の条件を満たす$n$個の直線によって分割する.
【どの直線も他のすべての直線と交わり,どの$3$つの直線も$1$点で交わらない.】
このような$n$個の直線によって作られる領域の個数を$L(n)$とすると,$L(1)=2,\ L(2)=4$は容易にわかる.次の問いに答えよ.

(i) $L(3),\ L(4),\ L(5)$をそれぞれ求めよ.
(ii) $L(n)$の漸化式を求めよ.
(iii) $L(n)$を求めよ.

(2)平面を次の条件を満たす$n$個の円によって分割する.
【どの円も他のすべての円と$2$点で交わり,どの$3$つの円も$1$点で交わらない.】
このような$n$個の円によって作られる領域の個数を$D(n)$とすると,$D(1)=2$は容易にわかる.次の問いに答えよ.

(i) $D(2),\ D(3),\ D(4)$をそれぞれ求めよ.
(ii) $D(n)$の漸化式を求めよ.
(iii) $D(n)$を求めよ.
山梨大学 国立 山梨大学 2012年 第3問
円$C:x^2+y^2=1$と点$\mathrm{A}(x_0,\ 0)$があり,$0<x_0<1$とする.原点$\mathrm{O}$と円$C$上の点$\mathrm{B}$を通る直線$\ell_1$と線分$\mathrm{AB}$の垂直二等分線$\ell_2$の交点を$\mathrm{P}$とする.点$\mathrm{B}$が円$C$上を動くとき,点$\mathrm{P}$の軌跡の方程式を求めよ.また,その方程式が表す図形を下の座標平面上に図示せよ.
(図は省略)
鳴門教育大学 国立 鳴門教育大学 2012年 第4問
半径$2$の円に内接する四角形$\mathrm{ABCD}$において,$\mathrm{BD}$がこの円の直径であるとする.$\mathrm{AD}=3$,$\mathrm{CD}=2$とするとき,次の問いに答えよ.

(1)四角形$\mathrm{ABCD}$の面積を求めよ.
(2)$\mathrm{AC}$の長さを求めよ.
(3)$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{E}$とし,$\angle \mathrm{AEB}=\theta$とする.このとき,$\sin \theta$の値を求めよ.
大分大学 国立 大分大学 2012年 第2問
円周上の点Aにおける円の接線上に点Aと異なる点Pをとる.点Pを通る直線が点Pから近い順に2点B,Cで円と交わっている.$\angle \text{APB}$の二等分線と線分AB,ACとの交点をそれぞれD,Eとする.$\text{PA}:\text{PB}=r:1-r$とおき,$\text{BD}=s,\ \text{CE}=t$とおく.ただし,$0<r<1$とする.

(1)線分ADの長さを$r$と$s$で表しなさい.
(2)$\text{PB}:\text{PC}=2:3$となるとき,$r$の値を求めなさい.
(3)(2)のとき,線分AEの長さを$t$で表しなさい.
茨城大学 国立 茨城大学 2012年 第3問
座標平面上に点$\mathrm{A}(3,\ 0)$,$\mathrm{B}(0,\ 4)$がある.点$\mathrm{P}$が単位円$C:x^2+y^2=1$上を動くとき,次の各問に答えよ.

(1)$\triangle \mathrm{PAB}$の面積が最小となる点$\mathrm{P}$の座標を求めよ.
(2)$\mathrm{PA}^2+\mathrm{PB}^2$が最小となる点$\mathrm{P}$の座標を求めよ.
早稲田大学 私立 早稲田大学 2012年 第1問
$x$-$y$平面上に$2$点$\mathrm{A}(2,\ -1)$,$\mathrm{B}(-3,\ 3)$をとる.このとき、次の各問いに答えよ.答のみ解答欄に記入せよ.

(1)点$\mathrm{A}$,$\mathrm{B}$を通る円の中心を$(p,\ q)$とするとき,$p$と$q$の関係式を求めよ.
(2)点$\mathrm{A}$,$\mathrm{B}$を直径の両端とする円の方程式を
$(x-p_0)^2+(y-q_0)^2={r_0}^2 \quad (p_0,\ q_0,\ r_0\ \text{は定数})$の形に表せ.
(3)$(2)$の結果を用いて,点$\mathrm{A}$,$\mathrm{B}$を通る円の方程式を,$k \ (\neq 0)$を定数として
\[ k\left\{(x-p_0)^2+(y-q_0)^2-{r_0}^2\right\}+ax+by=c \]
と表すとき,$\displaystyle\frac{b}{a},\ \frac{c}{a}$を求めよ.
早稲田大学 私立 早稲田大学 2012年 第3問
曲線$x^2+y^2=100$($x \geqq 0$かつ$y \geqq 0$)を$C$とする.点$\mathrm{P},\ \mathrm{Q}$は$C$上にあり,線分$\mathrm{PQ}$の中点を$\mathrm{R}$とする.ただし,点$\mathrm{P}$と点$\mathrm{Q}$が一致するときは,点$\mathrm{R}$は点$\mathrm{P}$に等しいものとする.

(1)点$\mathrm{P}$の座標が$(6,\ 8)$であり,点$\mathrm{Q}$が$C$上を動くとき,点$\mathrm{R}$の軌跡は,
\[ (x-[キ])^2+(y-[ク])^2=[ケ],\ [コ] \leqq x \leqq [サ],\ [シ] \leqq y \leqq [ス] \]
である.
(2)点$\mathrm{P}$,$\mathrm{Q}$が$C$上を自由に動くとき,点$\mathrm{R}$の動く範囲の面積は,
\[ \frac{[セ]}{[ソ]}\pi + [タ] \]
である.ただし,$[ソ]$はできるだけ小さな自然数で答えること.
慶應義塾大学 私立 慶應義塾大学 2012年 第1問
半径$1$の球が平面の上に接している.平面との接点を$\mathrm{O}$とし,$\mathrm{O}$を球の南極点とみなしたときの球の北極点を$\mathrm{N}$とする.平面上に点$\mathrm{A}$を$\mathrm{OA}=3$となるようにとる.また点$\mathrm{B}$を$\mathrm{OB}=4$であり,直線$\mathrm{OA}$と直線$\mathrm{OB}$が直交するようにとる.\\
\quad 点$\mathrm{N}$と平面上の点$\mathrm{P}$を結ぶ直線が球面と交わる$2$点の内,$\mathrm{N}$と異なる点を$\mathrm{P}^{\prime}$とする.このとき$\mathrm{N}$と$\mathrm{A}^{\prime}$,$\mathrm{B}^{\prime}$の距離はそれぞれ
\[ \mathrm{NA}^{\prime}= \frac{[$1$][$2$]}{\sqrt{[$3$][$4$]}},\quad \text{NB}^{\prime}=\frac{[$5$][$6$]}{\sqrt{[$7$][$8$]}} \]
である.点$\mathrm{P}$が直線$\mathrm{AB}$上を動くとき,$\mathrm{P}^{\prime}$は直径
\[ \frac{[$9$][$10$]}{\sqrt{[$11$][$12$]}} \]
の円を動く.
スポンサーリンク

「円」とは・・・

 まだこのタグの説明は執筆されていません。