タグ「内部」の検索結果

6ページ目:全128問中51問~60問を表示)
福井大学 国立 福井大学 2014年 第5問
$\mathrm{O}$を原点とする座標平面上に点$\mathrm{A}(2,\ 0)$と放物線$\displaystyle C:y=\frac{1}{2}x^2-3x+6$があり,$C$上の点で$x$座標が$t$と$2t$であるものをそれぞれ$\mathrm{P}$,$\mathrm{Q}$とおく.このとき,以下の問いに答えよ.ただし$t>0$とする.

(1)$3$点$\mathrm{A}$,$\mathrm{P}$,$\mathrm{Q}$が一直線上にあるときの$t$の値を$t_0$とおく.$t_0$の値を求めよ.
(2)$t=t_0$のとき,$\triangle \mathrm{OAQ}$の周および内部と,不等式$\displaystyle y \geqq \frac{1}{2}x^2-3x+6$の表す領域との共通部分の面積を求めよ.
(3)$0<t<t_0$を満たす$t$に対して,$\triangle \mathrm{APQ}$の面積を$S(t)$とおくとき,$S(t)$の最大値とそのときの$t$の値を求めよ.
茨城大学 国立 茨城大学 2014年 第3問
$\mathrm{OA}=\sqrt{3}$,$\mathrm{OB}=2$,$\mathrm{AB}=\sqrt{5}$となる三角形$\mathrm{OAB}$がある.三角形$\mathrm{OAB}$の内部の点$\mathrm{C}$から辺$\mathrm{OA}$,$\mathrm{OB}$に下ろした垂線の足をそれぞれ$\mathrm{P}$,$\mathrm{Q}$とすると,
\[ \mathrm{OP}:\mathrm{PA}=2:1,\quad \mathrm{OQ}:\mathrm{QB}=1:2 \]
であった.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおくとき,以下の各問に答えよ.

(1)内積$\overrightarrow{a} \cdot \overrightarrow{b}$,$\overrightarrow{c} \cdot \overrightarrow{a}$,$\overrightarrow{c} \cdot \overrightarrow{b}$をそれぞれ求めよ.
(2)$\overrightarrow{c}$を$\overrightarrow{a}$,$\overrightarrow{b}$を用いて表せ.
(3)点$\mathrm{C}$から辺$\mathrm{AB}$に下ろした垂線の足を$\mathrm{R}$とするとき,$\mathrm{AR}:\mathrm{RB}$を求めよ.

\mon[注] 点$\mathrm{X}$から辺$\mathrm{YZ}$に下ろした垂線の足とは,点$\mathrm{X}$から辺$\mathrm{YZ}$に下ろした垂線と辺$\mathrm{YZ}$との交点のことである.
宮崎大学 国立 宮崎大学 2014年 第5問
座標平面において,$x$座標と$y$座標がともに整数である点を格子点という.$n$を自然数とし,放物線$y=x^2$,直線$x=n$および$x$軸で囲まれた図形を$S_n$とする.$S_n$の境界上にある格子点の個数を$a_n$とし,$S_n$の境界を除いた内部にある格子点の個数を$b_n$とするとき,次の各問に答えよ.

(1)$a_n$を,$n$を用いて表せ.
(2)$b_n$を,$n$を用いて表せ.
(3)$S_n$の面積を$c_n$とするとき,極限値$\displaystyle \lim_{n \to \infty} \frac{1}{n} \left( \frac{a_n}{2}+b_n-c_n \right)$を求めよ.
京都教育大学 国立 京都教育大学 2014年 第3問
次の問に答えよ.

(1)$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$は異なる$3$点,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.このとき,
\[ \mathrm{OA}^2+\mathrm{OB}^2=2(\mathrm{AM}^2+\mathrm{OM}^2) \]
であることを証明せよ.
(2)$xy$平面の原点$\mathrm{O}$を中心とする半径$3$の円を$\mathrm{O}_3$,$xy$平面の$\mathrm{O}$を中心とする半径$4$の円を$\mathrm{O}_4$とする.さらに$\mathrm{AB}$は$xy$平面上の長さ$6$の線分,$\mathrm{M}$は線分$\mathrm{AB}$の中点であるとする.次の条件$p,\ q$を考える.

$p:2$点$\mathrm{A}$,$\mathrm{B}$は$\mathrm{O}_4$の内部にある.
$q:$点$\mathrm{M}$は$\mathrm{O}_3$の内部にある.

このとき,次の問に答えよ.

(i) $p$は$q$であるための十分条件であることを証明せよ.
(ii) $p$は$q$であるための必要条件ではないことを証明せよ.
慶應義塾大学 私立 慶應義塾大学 2014年 第1問
$1$辺の長さが$1$である正六角形の頂点を時計の針の回り方と逆回りに$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とし,$\overrightarrow{\mathrm{AB}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{AF}}=\overrightarrow{b}$とする.

(1)$\displaystyle \overrightarrow{a} \cdot \overrightarrow{b}=\frac{[$1$][$2$]}{[$3$]}$,$\displaystyle (2 \overrightarrow{a}+3 \overrightarrow{b}) \cdot (3 \overrightarrow{a}-2 \overrightarrow{b})=\frac{[$4$][$5$]}{[$6$]}$である.
(2)$\overrightarrow{\mathrm{AP}}=2s \overrightarrow{a}+(3-3s) \overrightarrow{b}$で与えられる点$\mathrm{P}$が$\triangle \mathrm{ACF}$の内部に存在するような実数$s$の値の範囲は
\[ \frac{[$7$]}{[$8$]}<s<\frac{[$9$]}{[$10$]} \]
である.
(3)正六角形$\mathrm{ABCDEF}$の外接円を$\mathrm{S}$とする.$\mathrm{S}$の周上の任意の点$\mathrm{Q}$に対して,ベクトル$\overrightarrow{q}=\overrightarrow{\mathrm{AQ}}$は
\[ [$11$][$12$] \overrightarrow{q} \cdot \overrightarrow{q}+[$13$][$14$] \overrightarrow{a} \cdot \overrightarrow{q}+2 \overrightarrow{b} \cdot \overrightarrow{q}=0 \]
をみたす.
近畿大学 私立 近畿大学 2014年 第3問
$xy$平面上の点$\mathrm{P}$の$x$座標,$y$座標をそれぞれ$\mathrm{P}_x$,$\mathrm{P}_y$と書く.$\mathrm{P}_x$,$\mathrm{P}_y$がともに整数であるような点$\mathrm{P}$を格子点という.次の問に答えよ.

(1)原点$\mathrm{O}$と点$\mathrm{A}(18,\ 12)$を結ぶ線分$\mathrm{OA}$がある.線分$\mathrm{OA}$上にある格子点の個数を求めよ.ただし両端$\mathrm{O}$,$\mathrm{A}$も線分$\mathrm{OA}$上の点とする.
(2)$\mathrm{O}$,$\mathrm{A}$と点$\mathrm{B}(18,\ 0)$を頂点とする$\triangle \mathrm{OAB}$の周または内部にある格子点の個数を求めよ.
(3)$n$を正の整数とする.$2$点$\mathrm{C}(n,\ 0)$,$\mathrm{D}(0,\ n)$を考える.格子点$\mathrm{P}$が$\triangle \mathrm{OCD}$の周または内部を動くとき$\mathrm{P}_x$の総和を$m_1$とおく.また$|\mathrm{P|_x-\mathrm{P}_y}$の総和を$n$が偶数のとき$m_2$,$n$が奇数のとき$m_3$とする.$m_1$,$m_2$,$m_3$を$n$の式で表せ.ただし解答は$an^3+bn^2+cn+d$のように$n$の次数について整理し,降べきの順(次数の高い順)に書くこと.
同志社大学 私立 同志社大学 2014年 第3問
座標平面において$x$軸上を動く点$\mathrm{P}(a,\ 0)$を中心とする半径$1$の円を$K$とする.次の問いに答えよ.

(1)円$K$が直線$y=x-2$と接するときの$a$の値を求めよ.
(2)$t$を変数とする関数を,$\displaystyle F(t)=\int_t^1 \sqrt{1-x^2} \, dx (-1 \leqq t \leqq 1)$とする.$0 \leqq a<1$のとき,円$K$の内部と領域$x \leqq 0$の共通部分の面積を関数$F(t)$を用いて表せ.
(3)領域$D=\{(x,\ y) \;|\; x \geqq 0,\ y \geqq x-2 \}$とする.円$K$の内部と領域$D$との共通部分の面積が最大となるときの$a$の値を求めよ.
成城大学 私立 成城大学 2014年 第3問
正三角形$\mathrm{ABC}$の内部の点$\mathrm{P}_0$を選ぶ.選ばれた点に最も近い$\triangle \mathrm{ABC}$の頂点を$\mathrm{Q}_0$としたとき,$\overrightarrow{\mathrm{Q}_0 \mathrm{P}_1}=2 \overrightarrow{\mathrm{Q}_0 \mathrm{P}_0}$を満たす点を$\mathrm{P}_1$とする.

(1)$\mathrm{P}_1$が$\triangle \mathrm{ABC}$の外部の点となるような$\mathrm{P}_0$の領域を求め,図示せよ.
(2)$\mathrm{P}_1$が$\triangle \mathrm{ABC}$の内部の点のとき,$\mathrm{P}_1$に最も近い頂点を$\mathrm{Q}_1$として,$\overrightarrow{\mathrm{Q}_1 \mathrm{P}_2}=2 \overrightarrow{\mathrm{Q}_1 \mathrm{P}_1}$を満たす点を$\mathrm{P}_2$とする.$\mathrm{P}_2$が$\triangle \mathrm{ABC}$の外部の点となるような$\mathrm{P}_0$の領域を求め,図示せよ.
武庫川女子大学 私立 武庫川女子大学 2014年 第1問
次の空欄$[$1$]$~$[$18$]$にあてはまる数字を入れよ.

(1)$\displaystyle \sqrt{\frac{31 \sqrt{3}+31 \sqrt{5}-10 \sqrt{42}-6 \sqrt{70}}{\sqrt{5}+\sqrt{3}}}$

$=\sqrt{[$1$][$2$]-[$3$] \sqrt{[$4$][$5$][$6$]}}$

$=\sqrt{[$7$][$8$]}-\sqrt{[$9$][$10$]}$

(2)$\mathrm{AB}=10$,$\mathrm{BC}=16$,$\angle \mathrm{ABC}={60}^\circ$の三角形$\mathrm{ABC}$を底面とする三角柱の内部に球がある.球は,三角柱の$5$つの面すべてに接している.このとき,

(i) 底面の三角形の面積は$[$11$][$12$] \sqrt{[$13$]}$である.
(ii) 球の半径は$[$14$] \sqrt{[$15$]}$である.
(iii) 三角柱の体積は$[$16$][$17$][$18$]$である.
上智大学 私立 上智大学 2014年 第2問
$xyz$空間において,$xy$平面に原点$\mathrm{O}(0,\ 0,\ 0)$で接し,中心が$\mathrm{C}(0,\ 0,\ 1)$であるような球面を$S$とする.点$\mathrm{P}(2 \sqrt{3},\ 0,\ 3)$に点光源をおくとき,$xy$平面上にできる$S$の影$S^\prime$を考える.

(1)点$\mathrm{P}$から球面$S$に引いた接線の一つと球面との接点を$\mathrm{A}$とする.線分$\mathrm{PA}$の長さは$\sqrt{[キ]}$である.$\angle \mathrm{CPA}=\theta$とすると,$\displaystyle \sin \theta=\frac{[ク]}{[ケ]}$である.

(2)球面$S$上で光が当たる部分と影の部分との境界は,$\displaystyle \left( \frac{\sqrt{[コ]}}{[サ]},\ [シ],\ \frac{[ス]}{[セ]} \right)$を中心とし,半径が$\displaystyle \frac{\sqrt{[ソ]}}{[タ]}$の円である.
(3)影$S^\prime$は長軸の長さが$[チ] \sqrt{[ツ]}$の楕円の内部である.
スポンサーリンク

「内部」とは・・・

 まだこのタグの説明は執筆されていません。