タグ「内部」の検索結果

1ページ目:全128問中1問~10問を表示)
愛知教育大学 国立 愛知教育大学 2016年 第4問
$xy$平面において,点$(0,\ 2)$を中心とする半径$2$の円を$C$とする.また,放物線$y=ax^2$を$P$とする.ただし,$a$は正の実数とする.

(1)円$C$と放物線$P$との共有点が円$C$の円周の長さを$3$等分するとき,$a$の値を求めよ.
(2)$a$の値を$(1)$で求めたものとする.このとき,円$C$と放物線$P$により囲まれてできる図形のうち,点$\displaystyle \left( \frac{3}{2},\ \frac{3}{2} \right)$を内部に含む図形の面積を求めよ.
千葉大学 国立 千葉大学 2016年 第2問
座標平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(0,\ 11)$,$\mathrm{P}(m,\ 0)$,$\mathrm{Q}(0,\ n)$をとる.ただし,$m$と$n$は$1 \leqq m \leqq 5$,$1 \leqq n \leqq 11$を満たす整数とする.

(1)三角形$\mathrm{OAB}$の内部に含まれる格子点の個数を求めよ.ただし,格子点とは$x$座標と$y$座標がともに整数である点のことであり,内部には辺上の点は含まれない.
(2)三角形$\mathrm{OPQ}$の内部に含まれる格子点の個数が三角形$\mathrm{OAB}$の内部に含まれる格子点の個数の半分になるような組$(m,\ n)$をすべて求めよ.
千葉大学 国立 千葉大学 2016年 第1問
座標平面上に$5$点$\mathrm{O}(0,\ 0)$,$\mathrm{A}(5,\ 0)$,$\mathrm{B}(0,\ 11)$,$\mathrm{P}(m,\ 0)$,$\mathrm{Q}(0,\ n)$をとる.ただし,$m$と$n$は$1 \leqq m \leqq 5$,$1 \leqq n \leqq 11$を満たす整数とする.

(1)三角形$\mathrm{OAB}$の内部に含まれる格子点の個数を求めよ.ただし,格子点とは$x$座標と$y$座標がともに整数である点のことであり,内部には辺上の点は含まれない.
(2)三角形$\mathrm{OPQ}$の内部に含まれる格子点の個数が三角形$\mathrm{OAB}$の内部に含まれる格子点の個数の半分になるような組$(m,\ n)$をすべて求めよ.
和歌山大学 国立 和歌山大学 2016年 第3問
$s,\ t$を実数とする.平面上の異なる$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{P}$は$\overrightarrow{\mathrm{PC}}=s \overrightarrow{\mathrm{PA}}+t \overrightarrow{\mathrm{PB}}$を満たしている.また,点$\mathrm{C}$および点$\mathrm{P}$は直線$\mathrm{AB}$上にない.線分$\mathrm{BC}$を$1:3$に内分する点$\mathrm{Q}$が直線$\mathrm{AP}$上にあるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{PB}}$と$\overrightarrow{\mathrm{PC}}$を用いて表し,$t$の値を求めよ.
(2)$\overrightarrow{\mathrm{AQ}}=2 \overrightarrow{\mathrm{AP}}$を満たすとき,$s$の値を求めよ.
(3)点$\mathrm{P}$が$\triangle \mathrm{ABC}$の内部にあるとき,$s$のとり得る値の範囲を求めよ.ただし,三角形の内部に周は含まれないものとする.
和歌山大学 国立 和歌山大学 2016年 第3問
$s,\ t$を実数とする.平面上の異なる$4$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$,$\mathrm{P}$は$\overrightarrow{\mathrm{PC}}=s \overrightarrow{\mathrm{PA}}+t \overrightarrow{\mathrm{PB}}$を満たしている.また,点$\mathrm{C}$および点$\mathrm{P}$は直線$\mathrm{AB}$上にない.線分$\mathrm{BC}$を$1:3$に内分する点$\mathrm{Q}$が直線$\mathrm{AP}$上にあるとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{PQ}}$を$\overrightarrow{\mathrm{PB}}$と$\overrightarrow{\mathrm{PC}}$を用いて表し,$t$の値を求めよ.
(2)$\overrightarrow{\mathrm{AQ}}=2 \overrightarrow{\mathrm{AP}}$を満たすとき,$s$の値を求めよ.
(3)点$\mathrm{P}$が$\triangle \mathrm{ABC}$の内部にあるとき,$s$のとり得る値の範囲を求めよ.ただし,三角形の内部に周は含まれないものとする.
島根大学 国立 島根大学 2016年 第2問
次の問いに答えよ.

(1)$2$次方程式$t^2+5t+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2$の値を求めよ.
(2)$u,\ v$を実数とする.$2$次方程式$t^2-ut+v=0$が実数解をもつとき,点$(u,\ v)$の存在範囲を図示せよ.
(3)平面上の点$(a,\ b)$が原点を中心とする半径$1$の円の内部を動くとき,点$(a+b,\ ab)$の動いてできる領域を図示せよ.
九州大学 国立 九州大学 2016年 第3問
袋の中に,赤玉が$15$個,青玉が$10$個,白玉が$5$個入っている.袋の中から玉を$1$個取り出し,取り出した玉の色に応じて,以下の操作で座標平面に置いたコインを動かすことを考える.


\mon[(操作)] コインが点$(x,\ y)$にあるものとする.赤玉を取り出したときにはコインを点$(x+1,\ y)$に移動,青玉を取り出したときには点$(x,\ y+1)$に移動,白玉を取り出したときには点$(x-1,\ y-1)$に移動し,取り出した球は袋に戻す.

最初に原点$(0,\ 0)$にコインを置き,この操作を繰り返して行う.指定した回数だけ操作を繰り返した後,コインが置かれている点を到達点と呼ぶことにする.このとき,以下の問いに答えよ.

(1)操作を$n$回繰り返したとき,白玉を$1$度だけ取り出したとする.このとき,到達点となり得る点をすべて求めよ.
(2)操作を$n$回繰り返したとき,到達点となり得る点の個数を求めよ.
(3)座標平面上の$4$点$(1,\ 1)$,$(-1,\ 1)$,$(-1,\ -1)$,$(1,\ -1)$を頂点とする正方形$D$を考える.操作を$n$回繰り返したとき,到達点が$D$の内部または辺上にある確率を$P_n$とする.$P_3$を求めよ.
(4)自然数$N$に対して$P_{3N}$を求めよ.
島根大学 国立 島根大学 2016年 第2問
次の問いに答えよ.

(1)$2$次方程式$t^2+5t+2=0$の解を$\alpha,\ \beta$とするとき,$\alpha^2+\beta^2$の値を求めよ.
(2)$u,\ v$を実数とする.$2$次方程式$t^2-ut+v=0$が実数解をもつとき,点$(u,\ v)$の存在範囲を図示せよ.
(3)平面上の点$(a,\ b)$が原点を中心とする半径$1$の円の内部を動くとき,点$(a+b,\ ab)$の動いてできる領域を図示せよ.
宇都宮大学 国立 宇都宮大学 2016年 第4問
座標平面上の曲線$y^2-2x-2=0$と直線$\displaystyle x+y=\frac{1}{2}$で囲まれた図形を$D$とする.このとき,次の問いに答えよ.

(1)座標平面に$D$を図示せよ.
(2)$D$の面積を求めよ.
(3)点$\mathrm{P}(x,\ y)$が$D$の内部および境界線上を動くとき,$3x+2y$の値がとりうる範囲を求めよ.
愛媛大学 国立 愛媛大学 2016年 第5問
正方形$\mathrm{ABCD}$の内部の点$\mathrm{P}$に対して$\angle \mathrm{CPD}$が直角であるとき,$\displaystyle \frac{\mathrm{BP}}{\mathrm{AP}}$の最大値を求めよ.
スポンサーリンク

「内部」とは・・・

 まだこのタグの説明は執筆されていません。