タグ「傾き」の検索結果

2ページ目:全242問中11問~20問を表示)
明治大学 私立 明治大学 2016年 第1問
次の各問の$[ ]$に当てはまる数を入れよ.

(1)$100$以下の自然数で,$2$と$5$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$個である.
同様に$100$以下の自然数で,$2$と$3$を共に素因数にもち,それ以外の素数を素因数にもたない数の個数は,$[ ]$である.
(2)曲線$C:y=x^3-3x+16$を第$1$象限で考える.曲線$C$の接線で,点$(0,\ 0)$を通るものを$\ell$とするとき,$\ell$の傾きは,$[ ]$であり,$C$,$\ell$と$y$軸で囲まれた領域の面積は,$[ ]$である.
(3)$1$辺の長さが$y$の正方形を$\mathrm{ABCD}$とし,$2$つの対角線の交点を$\mathrm{O}$とする.$\mathrm{O}$から垂直に高さが$x$の点$\mathrm{E}$をとり,四角錐$\mathrm{E}$-$\mathrm{ABCD}$を考える.$\mathrm{AE}$の長さが$\displaystyle \frac{\sqrt{3}}{2}$のとき,体積が最大となるのは,
\[ x=[ ],\quad y=[ ] \]
のときである.
学習院大学 私立 学習院大学 2016年 第4問
放物線$C:y=4-x^2$と$x$軸とで囲まれた部分を$D$とし,$D$の面積を$S$とする.

(1)$S$を求めよ.
(2)点$(-2,\ 0)$を通り傾き$\displaystyle \frac{4}{5}$の直線と$C$とで囲まれた部分の面積を$T$とする.$T$と$\displaystyle \frac{S}{2}$の大小を判定せよ.
(3)傾きが$\displaystyle \frac{4}{5}$であり$D$の面積を$2$等分する直線を$L$とする.$L$の方程式を求めよ.
神奈川大学 私立 神奈川大学 2016年 第2問
関数$f(x)=(x-k)^2$と$g(x)=-(x-2)^2+4$について,次の問いに答えよ.ただし,$k$は定数である.

(1)曲線$y=g(x)$について,傾きが$-2$である接線の方程式を求めよ.また,その接点の座標を求めよ.
(2)方程式$f(x)-g(x)=0$が異なる$2$つの実数解をもつような$k$の値の範囲を求めよ.
(3)$k$を$(2)$で求めた範囲にある数とする.さらに,点$\mathrm{P}(x,\ y)$が連立不等式
\[ \left\{ \begin{array}{l}
y \geqq (x-k)^2 \\
y \leqq -(x-2)^2+4 \phantom{\frac{\mkakko{}}{2}}
\end{array} \right. \]
を満たす領域を動くとき,$y+2x$の最大値が$9$となるような$k$の値の範囲を求めよ.
甲南大学 私立 甲南大学 2016年 第3問
曲線$C:y=x^3-6x^2+8x$がある.この曲線に傾きが$-1$である$2$本の接線$\ell_1$,$\ell_2$を引く.$C$と$\ell_1$で囲まれる部分の面積を$S_1$,$C$と$\ell_2$で囲まれる部分の面積を$S_2$とする.$S_1$と$S_2$の和を求めよ.
甲南大学 私立 甲南大学 2016年 第3問
曲線$C:y=x^3-6x^2+8x$がある.この曲線に傾きが$-1$である$2$本の接線$\ell_1$,$\ell_2$を引く.$C$と$\ell_1$で囲まれる部分の面積を$S_1$,$C$と$\ell_2$で囲まれる部分の面積を$S_2$とする.$S_1$と$S_2$の和を求めよ.
広島工業大学 私立 広島工業大学 2016年 第3問
大小$2$個のさいころを同時に$1$回投げるとき,大きいさいころの出た目を$a$,小さいさいころの出た目を$b$とする.座標平面上の$2$点$\mathrm{P}(a,\ 0)$,$\mathrm{Q}(0,\ b)$について,次の問いに答えよ.

(1)直線$\mathrm{PQ}$の傾きが$-1$となる確率を求めよ.
(2)直線$\mathrm{PQ}$の傾きが整数となる確率を求めよ.
(3)線分$\mathrm{PQ}$(両端を含まない)と直線$y=-x+3$がただ$1$点で交わる確率を求めよ.
玉川大学 私立 玉川大学 2016年 第4問
曲線$C:y=x^3-12x$とその上の点$\mathrm{A}(1,\ -11)$がある.このとき,次の問いに答えよ.

(1)点$\mathrm{A}$を通る曲線$C$の接線$2$本を求めよ.
(2)曲線$y=x^3+px^2+qx+r$と直線$y=mx+n$が異なる$3$点で交わるとき,その交点の$x$座標を左から$a,\ b,\ c$とする.曲線と直線の囲む部分の左側,右側の面積をそれぞれ$S$,$S^\prime$とするとき,
\[ S-S^\prime=\frac{1}{6}(c-a)^3 \left( b-\frac{a+c}{2} \right) \]
を示せ.
(3)点$\mathrm{A}$を通り,$(1)$で求めた$2$直線の傾きの間の値を傾きとしてもつ直線$\ell$と曲線$C$の囲む$2$つの部分の面積が等しい.このとき,直線$\ell$を求めよ.ここで,$(2)$から$\displaystyle b=\frac{a+c}{2}$のとき,$S=S^\prime$となることに注意せよ.
東京薬科大学 私立 東京薬科大学 2016年 第1問
次の問に答えよ.ただし,$*$については$+,\ -$の$1$つが入る.

(1)$x^2+5x+1=0$のとき,$\displaystyle x+\frac{1}{x}=[$*$ア]$であり,$\displaystyle x^2+\frac{1}{x^2}=[イウ]$である.

(2)$\displaystyle \frac{3}{2}\pi<\theta<2 \pi$かつ$\displaystyle \tan \theta=-\frac{12}{5}$のとき,$\displaystyle \cos \theta=\frac{[$*$エ]}{[オカ]}$,$\displaystyle \sin \theta=\frac{[$*$キク]}{[オカ]}$である.

(3)点$(4,\ 2)$を通り,傾きが$m$の直線$\ell$が,円$C:x^2+y^2=4$に接するとき,$\displaystyle m=[ケ]$,$\displaystyle \frac{[コ]}{[サ]}$である.

(4)容器$\mathrm{A}$には質量パーセント濃度$3 \, \%$の食塩水が$200 \, \mathrm{g}$,容器$\mathrm{B}$には質量パーセント濃度$10 \, \%$の食塩水が$300 \, \mathrm{g}$入っている.今,$\mathrm{A}$,$\mathrm{B}$それぞれから同量ずつ食塩水を取り出し,$\mathrm{A}$から取り出したものを$\mathrm{B}$へ,$\mathrm{B}$から取り出したものを$\mathrm{A}$へ入れたところ,$2$つの容器$\mathrm{A}$,$\mathrm{B}$内の食塩水の質量パーセント濃度が等しくなった.このとき,容器$\mathrm{A}$,$\mathrm{B}$それぞれから取り出した食塩水の量は$[シスセ] \, \mathrm{g}$である.ただし,質量パーセント濃度とは溶液(本問の場合,食塩水)の質量に対する溶質(本問の場合,食塩)の質量の割合を百分率($\%$)で表したものである.
近畿大学 私立 近畿大学 2016年 第3問
放物線$y=4x^2+x$を$C$とし,$a$を正の実数とする.

(1)$C$上の点$(1,\ 5)$における接線の方程式を求めよ.
(2)点$(0,\ -a)$から$C$へ引いた$2$つの接線を$\ell_1,\ \ell_2$とする.ただし$\ell_1$の傾きは$\ell_2$の傾きより大きいとする.また,$\ell_1,\ \ell_2$と$C$との接点をそれぞれ$\mathrm{A}_1,\ \mathrm{A}_2$とする.$\ell_1,\ \ell_2$の方程式と$\mathrm{A}_1,\ \mathrm{A}_2$の座標を求めよ.
(3)$2$点$\mathrm{A}_1,\ \mathrm{A}_2$を通る直線および$C$で囲まれた図形の面積$S_1$を求めよ.
(4)$\ell_1,\ \ell_2$と$C$で囲まれた図形の面積を$S_2$とする.$\displaystyle \frac{S_1}{S_2}$を求めよ.
和歌山県立医科大学 公立 和歌山県立医科大学 2016年 第2問
$t$を実数とし,$a=t^3+2(2+\sqrt{6})t^2+3(1+2 \sqrt{6})t+2(2+\sqrt{6})$とする.点$(2,\ -2)$を通り,傾き$a$の直線を$\ell$とする.$\ell$と放物線$y=x^2$が交わらない$t$の範囲を求めよ.
スポンサーリンク

「傾き」とは・・・

 まだこのタグの説明は執筆されていません。