タグ「倍角」の検索結果

1ページ目:全2問中1問~10問を表示)
東京理科大学 私立 東京理科大学 2015年 第1問
次の文章の$[ア]$から$[ム]$までに当てはまる数字$0$~$9$を求めなさい.

(1)$c$を定数として,$3$次関数$f(x)$を
\[ f(x)=\frac{1}{3}x(x-1)(x-c) \]
と定める.$f(x)$の導関数$f^\prime(x)$は$\alpha,\ \beta (\alpha<\beta)$において
\[ f^\prime(\alpha)=0,\quad f^\prime(\beta)=0 \]
を満たすものとする.
解と係数の関係により,
\[ \alpha+\beta=\frac{[ア]}{[イ]}(c+1),\quad \alpha\beta=\frac{1}{[ウ]}c \]
である.したがって


$\displaystyle\frac{f(\alpha)-f(\beta)}{\alpha-\beta}=-\frac{[エ]}{[オ][カ]}(c^2-c+[キ])$

$\displaystyle (\alpha-\beta)^2=\frac{[ク]}{[ケ]}(c^2-c+1)$


となるので,$\displaystyle c=\frac{1}{2}$のとき
\[ f(\alpha)-f(\beta)=\frac{\sqrt{[コ]}}{[サ][シ]} \]
である.
(2)定数$\theta$に対して,数列$\{a_n\}$を
\[ a_n=\cos (2^{n-1}\theta) \quad (n=1,\ 2,\ 3,\ \cdots) \]
と定める.

(i) 余弦の$2$倍角の公式により,数列$\{a_n\}$は漸化式
\[ a_{n+1}=[ス] {a_n^2}-1 \]
を満たす.
(ii) $\theta$が$\displaystyle \cos \theta=\frac{1}{3}$を満たすとき
\[ a_3=\frac{[セ][ソ]}{[タ][チ]} \]
である.
(iii) $\displaystyle \theta=\frac{5}{96}\pi$とするとき
\[ a_{n+1}=a_n \]
を満たす最小の正の整数$n$は$[ツ]$である.

(3)大,中,小の$3$個のさいころを同時に投げるものとする.

(i) $1$の目が少なくとも$1$つ出る確率は$\displaystyle \frac{[テ][ト]}{[ナ][ニ][ヌ]}$である.
(ii) 出る目の最大値が$5$である確率は$\displaystyle \frac{[ネ][ノ]}{[ハ][ヒ][フ]}$である.
(iii) 大のさいころの目は中のさいころの目以上であり,かつ,小のさいころの目は中のさいころの目以下である確率は$\displaystyle \frac{[ヘ]}{[ホ][マ]}$である.
\mon[$\tokeishi$] 大と小のさいころの目の平均が中のさいころの目と等しい確率は$\displaystyle \frac{1}{[ミ][ム]}$である.
山口大学 国立 山口大学 2014年 第1問
一般項が$\displaystyle a_n=\tan \frac{\pi}{2^{n+1}}$で与えられる数列$\{a_n\}$について,次の問いに答えなさい.

(1)正接の$2$倍角の公式$\displaystyle \tan 2\theta=\frac{2 \tan \theta}{1-\tan^2 \theta}$を用いて,数列$\{a_n\}$の漸化式を求めなさい.
(2)極限値$\displaystyle \lim_{n \to \infty} \frac{a_{n+1}}{a_n}$を求めなさい.
スポンサーリンク

「倍角」とは・・・

 まだこのタグの説明は執筆されていません。