タグ「倍数」の検索結果

3ページ目:全225問中21問~30問を表示)
聖マリアンナ医科大学 私立 聖マリアンナ医科大学 2016年 第4問
$p$を素数とするとき,以下の命題を証明しなさい.

(1)$a,\ b,\ c$を整数とするとき,$a^3+pb^3+p^2c^3-p^3abc=0$ならば,$a$は$p$の倍数である.
(2)$a,\ b,\ c$を整数とするとき,$a^3+pb^3+p^2c^3-p^3abc=0$ならば,$a,\ b,\ c$はどれも$p$の倍数である.
(3)$a,\ b,\ c$を整数とするとき,$a^3+pb^3+p^2c^3-p^3abc=0$ならば,$a=b=c=0$である.
(4)$x,\ y,\ z$を有理数とするとき,$x^3+py^3+p^2z^3-p^3xyz=0$ならば,$x=y=z=0$である.
天使大学 私立 天使大学 2016年 第2問
次の問いに答えなさい.

(1)分母と分子が整数である有理数全体の集合を$Q$とおく.さらに$2$以上$4$以下で分母が$15$である$Q$の部分集合を$U$とおく.次の問いに答えなさい.

(i) 分子が$3$の倍数である$U$の要素の個数$N_1$と分子が$5$の倍数である$U$の要素の個数$N_2$を求めなさい.

$N_1=\mkakko{$\mathrm{a}$} \mkakko{$\mathrm{b}$}$ \quad $N_2=\mkakko{$\mathrm{c}$}$

(ii) $U$の要素の中で,既約分数の個数を$N_3$とする.$N_3$を求めなさい.

$N_3=\mkakko{$\mathrm{d}$} \mkakko{$\mathrm{e}$}$


(2)三角形$\mathrm{ABC}$において$\angle \mathrm{A}={30}^\circ$,$\angle \mathrm{B}={90}^\circ$とする.直線$\mathrm{AB}$上に$\mathrm{AP}=\mathrm{AC}$を満たす点$\mathrm{P}$をとり,$\angle \mathrm{CPA}=\theta$とおく.次の問いに答えなさい.

(i) $\mathrm{BA}>\mathrm{BP}$のとき,$\tan \theta=\mkakko{$\mathrm{f}$}+\mkakko{$\mathrm{g}$} \sqrt{\mkakko{$\mathrm{h}$}}$である.
(ii) $\mathrm{BA}<\mathrm{BP}$のとき,$\tan \theta=\mkakko{$\mathrm{i}$}+\mkakko{$\mathrm{j}$} \mkakko{$\mathrm{k}$} \sqrt{\mkakko{$\mathrm{l}$}}$である.
近畿大学 私立 近畿大学 2016年 第1問
正$n$面体の各面に$1$から$n$の数字を$1$つずつ書き,$n$面のさいころ($n$面ダイス)を作る.ただし回転させて一致するものは同じ$n$面ダイスとみなす.

(1)$n$は$5$つの値をとる.それらの和は$[ア]$である.
(2)数字の書き方は$n=4$のとき$[イ]$通り,$n=6$のとき$[ウ]$通り,$n=8$のとき$[エ]$通り存在する.
(3)$n$面ダイスのそれぞれの目の出る確率は$\displaystyle \frac{1}{n}$とする.

(i) $4$面ダイスと$8$面ダイスを投げて,出た目の積が$4$の倍数となる確率は$[オ]$である.
(ii) $4$面ダイスと$6$面ダイスと$8$面ダイスを投げて,出た目の積が$100$以上となる確率は$[カ]$である.
大阪市立大学 公立 大阪市立大学 2016年 第1問
$x,\ y$を整数とするとき,次の問いに答えよ.

(1)$x^2+y^2$が$3$で割り切れるとき,$x$と$y$はともに$3$の倍数であることを示せ.
(2)$x^2+y^2$が$27$で割り切れるとき,$x$と$y$はともに$9$の倍数であることを示せ.
(3)$n$を正の整数とする.$x^2+y^2$が$3^{2n-1}$で割り切れるとき,$x$と$y$はともに$3^n$の倍数であることを示せ.
愛知県立大学 公立 愛知県立大学 2016年 第1問
$4$個のさいころを同時に投げて出た目をそれぞれ$A,\ B,\ C,\ D$で表すとき,以下の問いに答えよ.

(1)$A+B+C+D$が偶数である確率を求めよ.
(2)$AB+CD$が偶数である確率を求めよ.
(3)$ABC+BCD$が$5$の倍数である確率を求めよ.
(4)$ABCD$が$10$の倍数である確率を求めよ.
首都大学東京 公立 首都大学東京 2016年 第3問
$p,\ q,\ r$を整数とし,数列
\[ a_n=pn^3+qn^2+rn \quad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.以下の問いに答えなさい.

(1)$p+r=q=0$のとき,すべての自然数$n$に対し$a_n$は$6$の倍数であることを示しなさい.
(2)$q$が$3$の倍数でないとき,$a_2-2a_1$は$6$の倍数ではないことを示しなさい.
(3)$a_1$と$a_2$がともに$6$の倍数であれば,すべての自然数$n$に対し$a_n$は$6$の倍数であることを示しなさい.
尾道市立大学 公立 尾道市立大学 2016年 第3問
$0,\ 1,\ 2,\ 3,\ 4,\ 5,\ 6$の数字が書いてある$7$個の石がある.このとき次の問いに答えなさい.

(1)これらの石から$3$個の石を選んで並べて,$3$桁の整数を作るとき$5$の倍数は何個あるか答えなさい.
(2)$7$個の石を円周上に並べるとき,$0$の両端に$1,\ 2$が並ぶ並べ方は何通りあるか答えなさい.
(3)$7$個の石を$1$列に並べるとき,$0,\ 1,\ 2$がどれも隣り合わない並べ方は何通りあるか答えなさい.
岡山県立大学 公立 岡山県立大学 2016年 第1問
整数$1,\ 2,\ 3,\ 4,\ 5$から三つの整数を重複なく選び,それを並べて$3$桁の整数を作る.次の問いに答えよ.

(1)このような整数は何個あるか.
(2)このような整数をすべて足し合わせるといくらになるか.
(3)このような整数のうち,$2$の倍数は何個あるか.
(4)このような整数のうち,$3$の倍数は何個あるか.
(5)このような整数を重ねて$6$桁の整数を作る.例えば,$215$を重ねて$215215$とする.このようにしてできた$6$桁の整数は$7$の倍数であることを示せ.
釧路公立大学 公立 釧路公立大学 2016年 第4問
次の問いに答えよ.

(1)大中小$3$つのさいころを投げるとき,出る$3$つの目の積が偶数となる場合は何通りあるか.
(2)$1$から$25$までの整数が$1$つずつ書かれた$25$枚のカードがある.以下の問いに答えよ.

(i) $2$枚のカードをもとに戻さず順に取り出すとき,$2$枚目が$5$の倍数になる確率を求めよ.
(ii) $2$枚のカードを同時に取り出すとき,取り出した$2$枚のカードの整数の和が$5$の倍数になる確率を求めよ.
高崎経済大学 公立 高崎経済大学 2016年 第3問
次の各問に答えよ.なお,整数$a,\ b,\ c$について,$a=bc$と表されるとき,$a$は$b$の倍数であるという.

(1)$x$は実数とする.不等式$x^4-x^2-20<0$を解け.
(2)$m$は整数とする.次の命題の真偽を調べよ.また,真である場合には証明し,偽である場合には反例をあげよ.

$m$は奇数$\Longrightarrow m^4-m^2-20$は$4$の倍数

(3)$m$は整数とする.次の命題の真偽を調べよ.また,真である場合には証明し,偽である場合には反例をあげよ.

$m^4-m^2-20$は$4$の倍数$\Longrightarrow m$は奇数
スポンサーリンク

「倍数」とは・・・

 まだこのタグの説明は執筆されていません。