タグ「倍数」の検索結果

17ページ目:全225問中161問~170問を表示)
北海学園大学 私立 北海学園大学 2012年 第2問
$1$から$2012$までの整数のうち,$7$の倍数全体の集合を$A$,$11$の倍数全体の集合を$B$,$13$の倍数全体の集合を$C$とする.集合$X$の要素の個数が有限のとき,その要素の個数を$n(X)$で表すことにする.

(1)$n(A),\ n(B),\ n(C)$をそれぞれ求めよ.
(2)$n(A \cup B),\ n(A \cup C),\ n(B \cup C)$をそれぞれ求めよ.
(3)$n(A \cap (B \cup C)),\ n(A \cup (B \cup C))$をそれぞれ求めよ.
慶應義塾大学 私立 慶應義塾大学 2012年 第2問
次の$[ ]$にあてはまる最も適当な数または式を記入しなさい.

(1)多項式$P(x)$を$x^3+1$で割ったときの余りが$2x^2+13x$であった.このとき,$P(x)$を$x+1$で割ったときの余りは$[カ]$である.また,$P(x)$を$x^2-x+1$で割ったときの余りは$[キ]$である.
(2)数列$\{a_n\}$の初項から第$n$項までの和$S_n$が,
\[ S_n=n^3+2012 \]
で与えられるとする.この数列$\{a_n\}$の初項$a_1$は$a_1=[ク]$である.また,$2$以上の自然数$n$に対して,$a_n$を$n$を用いて表すと$a_n=[ケ]$となる.
(3)$a>1$とし,三角形$\mathrm{ABC}$で$\mathrm{AB}=2$,$\mathrm{BC}=a$,$\angle \mathrm{A}=30^\circ$であるようなものについて考える.このとき$k=[コ]$として,$1<a<k$の場合はこのような三角形は$2$つ存在するが,$a \geqq k$の場合はこのような三角形は$1$つしか存在しない.また$a \geqq k$の場合,$\mathrm{AC}$の長さを$a$を用いて表すと$\mathrm{AC}=[サ]$となる.
(4)$3$個のさいころを同時に投げるとき,出る目の数の積が$3$の倍数になる確率は$[シ]$であり,出る目の数の積が$15$の倍数になる確率は$[ス]$である.
(5)実数$x,\ y$が$2$つの不等式
\[ x^2+y^2 \leqq 25,\quad x-2y \geqq 5 \]
を同時に満たすとき,$y-2x$の最大値は$[セ]$であり,最小値は$[ソ]$である.
中央大学 私立 中央大学 2012年 第3問
下の図のように硬貨を一辺$n$の正三角形の形に並べたとき,そこに並んだ硬貨の総数を$n$番目の三角数といい,$t_n$で表す.このとき,以下の問いに答えよ.
(図は省略)

(1)$t_n$を$n$の式で表せ.
(2)$300$以下の自然数のうちに三角数はいくつあるか.
(3)$t_n$が$3$の倍数であるのは,$n$が$3$の倍数であるか,$n+1$が$3$の倍数であるかのいずれかのとき,またそのときに限ることを示せ.
(4)$300$以下の自然数のうちに$3$の倍数である三角数はいくつあるか.
(5)$300$以下の自然数のうちに$3$の倍数でもなく,三角数でもない数はいくつあるか.
津田塾大学 私立 津田塾大学 2012年 第1問
次の問に答えよ.

(1)数列
\[ 1,\ 101,\ 10101,\ 1010101,\ \cdots \]
の第$n$項を$a_n$とする.$a_{n+1}$を$a_n$を用いて表せ.また,$n$が$3$の倍数のとき,$a_n$は$7$の倍数であることを示せ.
(2)$0 \leqq \theta \leqq \pi$の範囲で,$2 \cos \theta+\sin \theta$の最大値および最小値を求めよ.
上智大学 私立 上智大学 2012年 第1問
次の問いに答えよ.

(1)$\triangle \mathrm{OAB}$に対し,
\[ \overrightarrow{\mathrm{OP}}=s \overrightarrow{\mathrm{OA}}+t \overrightarrow{\mathrm{OB}},\quad s \geqq 0,\quad t \geqq 0 \]
とする.また,$\triangle \mathrm{OAB}$の面積を$S$とする.

(i) $1 \leqq s+t \leqq 3$のとき,点$\mathrm{P}$の存在しうる領域の面積は$S$の$[ア]$倍である.
(ii) $1 \leqq s+2t \leqq 3$のとき,点$\mathrm{P}$の存在しうる領域の面積は$S$の$[イ]$倍である.

(2)$(\sqrt{2})^n$は$n$が奇数のとき無理数である.より一般に,$2$以上の整数$k$に対し,$(\sqrt[k]{2})^n$は$n$が$k$の倍数でないとき無理数である.したがって,$2$以上の整数$k$に対し,
\[ \left( \sqrt{2}x+\sqrt[k]{2} \right)^{100} \]
を展開して得られる$x$の多項式において,

(i) $x^{100}$の係数は$2$の$[ウ]$乗,
(ii) $n=0,\ 1,\ \cdots,\ 100$に対し,$x^n$の係数が整数となるような$n$の個数は

$k=2$のとき$[エ]$個
$k=3$のとき$[オ]$個
$k=5$のとき$[カ]$個
$k=7$のとき$[キ]$個
$k=51$のとき$[ク]$個

である.
関西大学 私立 関西大学 2012年 第3問
$1$から$5$までの番号が$1$つずつ書かれた$5$枚の赤色のカードと,$1$から$5$までの番号が$1$つずつ書かれた$5$枚の白色のカードと,$1$から$5$までの番号が$1$つずつ書かれた$5$枚の青色のカードがある.これら$15$枚のカードをよくかきまぜた後,$3$枚のカードを取り出す.次の$[ ]$を数値でうめよ.

(1)$3$枚とも赤色のカードである確率は$[$①$]$である.
(2)赤色,白色,青色のカードが$1$枚ずつある確率は$[$②$]$である.
(3)赤色,白色,青色のカードが$1$枚ずつあり,かつ$3$枚のカードの数字が異なっている確率は$[$③$]$である.
(4)$3$枚のカードの数字の積が$5$の倍数である確率は$[$④$]$である.
(5)$3$枚のカードの数字の積が$9$の倍数である確率は$[$⑤$]$である.
昭和大学 私立 昭和大学 2012年 第2問
以下の各問に答えよ.

(1)$\displaystyle \left( 2x^3-\frac{1}{4x^2} \right)^7$の展開式における$x^6$の項の係数を求めよ.
(2)$1,\ 1,\ 1,\ 1,\ 3,\ 3,\ 7$の$7$個の数字を使ってできる$7$桁の整数の個数を求めよ.
(3)$2$個のさいころを投げるとき,目の和が偶数である事象を$A$,少なくとも$1$個は$3$の倍数の目が出る事象を$B$とする.確率$P(A)$および$P(A \cap B)$をそれぞれ求めよ.
昭和大学 私立 昭和大学 2012年 第2問
以下の各問に答えよ.

(1)$\displaystyle \left( 2x^3-\frac{1}{4x^2} \right)^7$の展開式における$x^6$の項の係数を求めよ.
(2)$1,\ 1,\ 1,\ 1,\ 3,\ 3,\ 7$の$7$個の数字を使ってできる$7$桁の整数の個数を求めよ.
(3)$2$個のさいころを投げるとき,目の和が偶数である事象を$A$,少なくとも$1$個は$3$の倍数の目が出る事象を$B$とする.確率$P(A)$および$P(A \cap B)$をそれぞれ求めよ.
千葉工業大学 私立 千葉工業大学 2012年 第3問
次の各問に答えよ.

(1)$\displaystyle t=x-\frac{4}{x}$とおくと$\displaystyle t^2=x^2+\frac{[アイ]}{x^2}-[ウ]$である.$4$次方程式
\[ x^4-2x^3-16x^2+8x+16=0 \cdots\cdots (*) \]
の両辺に$\displaystyle \frac{1}{x^2}$をかけた方程式は,$\displaystyle t=x-\frac{4}{x}$を用いて,$t^2-[エ]t-[オ]=0$と表される.$4$次方程式$(*)$の解は$x=[カ] \pm [キ] \sqrt{[ク]}$,$[ケコ] \pm \sqrt{[サ]}$である.
(2)$5$個の数字$0,\ 1,\ 2,\ 3,\ 4$から異なる$3$個を並べて$3$桁の整数をつくる.このような整数は全部で$[シス]$個あり,このうち,偶数は$[セソ]$個,$9$の倍数は$[タ]$個ある.また,偶数でもなく$9$の倍数でもないものは$[チツ]$個ある.
吉備国際大学 私立 吉備国際大学 2012年 第2問
$n$は整数とする.

(1)$n$が$5$で割って$4$余るとき,$n^2$は$5$で割るといくつ余るか.
(2)$n^2$を$5$で割ったとき,余りは何になるか.可能性があるものをすべて書け.
(3)$n^2$が$5$の倍数の時,$n$は$5$の倍数であることを証明せよ.
スポンサーリンク

「倍数」とは・・・

 まだこのタグの説明は執筆されていません。