タグ「以降」の検索結果

2ページ目:全19問中11問~20問を表示)
上智大学 私立 上智大学 2014年 第3問
$1$から$10$までの数字を$1$つずつ書いた$10$枚のカードを数字の小さい順に左から右に並べる.この中から$3$枚を無作為に選び,いずれのカードも元の位置と異なる位置に置くという操作を考える.この操作を$2$回以上続けて行う場合,$2$回目以降はカードの並びを一番最初の状態に戻すことはせず,$1$回前の操作で置き換えられた状態から$3$枚を無作為に選ぶ.また,選んだ$3$枚のカードについて元の位置と異なる位置への置き方が複数あるとき,いずれの置き方も等しい確率で選ばれるものとする.置き換えの操作を$n$回続けて行ったとき,一番左のカードが$10$である確率を$P_n$で表す.

(1)$\displaystyle P_1=\frac{[ハ]}{[ヒ]}$である.
(2)$n$回の操作の後で一番左のカードが$10$であり,$(n+1)$回目の操作の後も一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[フ]}{[ヘ]}P_n$となる.
(3)$n$回の操作の後で一番左のカードが$10$ではなく,$(n+1)$回目の操作の後で一番左のカードが$10$となる確率を$P_n$の式で表すと$\displaystyle \frac{[ホ]P_n+[マ]}{[ミ]}$となる.
(4)$P_{n+1}$を$P_n$の式で表すと
\[ P_{n+1}=\frac{[ム]}{[メ]}P_n+\frac{[モ]}{[ヤ]} \]
となる.
(5)$\displaystyle P_n=\frac{[ユ]}{[ヨ]} \left( \frac{[ラ]}{[リ]} \right)^n+\frac{[ル]}{[レ]}$である.
熊本大学 国立 熊本大学 2013年 第1問
$X,\ Y$は$\{ 1,\ 2,\ 3,\ 4,\ 5,\ 6 \}$の空でない部分集合で,$X \cap Y$は空集合とする.また,$n$を自然数とする.$\mathrm{A}$君,$\mathrm{B}$君が以下のルールで対戦する.

(i) $1$回目の対戦では,まず$\mathrm{A}$君がさいころを投げて,出た目が$X$に属するならば$\mathrm{A}$君の勝ちとする.出た目が$X$に属さなければ$\mathrm{B}$君がさいころを投げて,出た目が$Y$に属するならば$\mathrm{B}$君の勝ちとする.
(ii) $1$回目の対戦で勝負がつかなかった場合は,$1$回目と同じ方法で$2$回目以降の対戦を行い,どちらかが勝つまで続ける.ただし,$n$回対戦して勝負がつかなかった場合は引き分けにする.

以下の問いに答えよ.

(1)さいころを投げたとき,$X,\ Y$に属する目が出る確率をそれぞれ$p,\ q$とする.$\mathrm{A}$君が勝つ確率を求めよ.
(2)$\mathrm{A}$君が勝つ確率が,$\mathrm{B}$君が勝つ確率よりも大きくなるような集合の組$(X,\ Y)$は何通りあるか.
福井大学 国立 福井大学 2013年 第1問
$2$つのさいころを同時に投げることをくり返し,投げるのを止めた時点までの出た目の総和が得点となるゲームを行う.さいころは何回投げてもよいし,途中で投げるのを止めてもよいが,$2$つのさいころで同じ目が出た場合は得点は$0$点となり,以降さいころを投げることもできなくなる.例えば,下の得点表において,$\mathrm{A}$君は$2$回で投げるのを止めて$18$点,$\mathrm{B}$君は$3$回目で「$6$と$6$」を出してしまったので$0$点となる.$\mathrm{C}$君は$1$回さいころを投げたところである.以下の問いに答えよ.

\begin{tabular}{|c||c|c|c|}
\hline
& $\mathrm{A}$君 & $\mathrm{B}$君 & $\mathrm{C}$君 \\ \hline
$1$回目 & $3$と$6$ & $1$と$3$ & $5$と$6$ \\
$2$回目 & $4$と$5$ & $4$と$6$ & \\
$3$回目 & 止 & $6$と$6$ & \\ \hline
得点 & $18$ & $0$ & \\ \hline
\end{tabular}


(1)$2$つのさいころを$1$回だけ投げてゲームを止めたときの,得点の期待値を求めよ.
(2)$\mathrm{C}$君がもう$1$回さいころを投げてゲームを止めたときの,得点の期待値を求めよ.
(3)これまでに出した目の合計が$x$である人がいる.この人がもう$1$回さいころを投げてゲームを止めたときの得点の期待値$y$を,$x$を用いて表せ.
(4)(3)で求めた$y$について,$y<x$となる$x$の範囲を求めよ.
浜松医科大学 国立 浜松医科大学 2012年 第2問
$24$時間診療業務を休みなく行う病院において,$40$日間で$1$万個使用される医療材料$\mathrm{A}$について考える.$\mathrm{A}$の使用頻度は常に一定であり,$1$日の時間帯や曜日による変動は全くないものとする.さて,病院における在庫管理では,「品切れ」が起きないこと,「コスト」をできるだけ低くすること,この$2$つが肝要である.医療材料$\mathrm{A}$の保管費は,その保管期間に比例し,$1$個につき$10$日間で$1$円である.また,納入業者に$\mathrm{A}$を注文すれば,注文量の多少に関わらず,品物が届いた時点で$200$円の事務費がかかる.なお,担当者は$\mathrm{A}$の在庫量$y$の時間的推移を把握しており,品切れになる直前という最適のタイミングで,注文した量が届くものとする.われわれは,保管費と事務費の和$S$を最小にするような注文の仕方を求める.以下の問いに答えよ.

(1)$\mathrm{A}$の在庫は最初$1$万個あったとする.そして注文する量は毎回一定として,$x$で表す.このとき,時間$t$による在庫量$y$の変化を表すグラフを,横軸を時間の$t$軸とする座標平面上に図示せよ.(図示する際には,適当な$x$の値を自ら設定すること.)
以下,$1$回目の注文によって品物の届く時点以降の$y$の変化について考察する.
(2)周期的な$y$の変動に留意して,平均在庫量を求めよ.
(3)長期にわたる保管費,事務費の総額をそれぞれ見積もり,保管費と事務費の和$S$の「$1$日当たりの平均コスト」を求めよ.さらに,この$1$日当たりの平均コストを最小にするような$x$の値を求めよ.
成城大学 私立 成城大学 2012年 第1問
あるイベントが,金曜日,土曜日,日曜日に,$1$日$1$回ずつ計$3$回開催される.参加するためには,当日に会場でチケット抽せん申し込みをして,その場で当せんする必要がある.また,一度当せんしたら,それ以降の開催日の抽せんには申し込みできない.当せん確率は,金曜日は$\displaystyle \frac{1}{3}$,土曜日は$\displaystyle \frac{1}{5}$,日曜日は$\displaystyle \frac{1}{7}$である.

$\mathrm{A}$は金曜日から抽せんに申し込み,金曜日にはずれたら必ず土曜日に,土曜日にはずれたら日曜日にも抽せん申し込みをする.
$\mathrm{B}$は土曜日から抽せんに申し込み,はずれたら必ず日曜日にも抽せん申し込みをする.

(1)$\mathrm{A}$がいずれかの日にイベントに参加できる確率を求めよ.
(2)$\mathrm{A}$と$\mathrm{B}$が同日にイベントに参加できる確率を求めよ.
(3)各日のチケットの金額は,金曜日は$3000$円,土曜日は$5000$円,日曜日は$7000$円である.$\mathrm{A}$が支払う金額の期待値を求めよ.
一橋大学 国立 一橋大学 2011年 第5問
AとBの2人が,1個のサイコロを次の手順により投げ合う.\\
\quad 1回目はAが投げる.\\
\quad $1,\ 2,\ 3$の目が出たら,次の回には同じ人が投げる.\\
\quad $4,\ 5$の目が出たら,次の回には別の人が投げる.\\
\quad 6の目が出たら,投げた人を勝ちとしそれ以降は投げない.

(1)$n$回目にAがサイコロを投げる確率$a_n$を求めよ.
(2)ちょうど$n$回目のサイコロ投げでAが勝つ確率$p_n$を求めよ.
(3)$n$回以内のサイコロ投げでAが勝つ確率$q_n$を求めよ.
神戸大学 国立 神戸大学 2011年 第3問
袋の中に0から4までの数字のうち1つが書かれたカードが1枚ずつ合計5枚入っている.4つの数$0,\ 3,\ 6,\ 9$をマジックナンバーと呼ぶことにする.次のようなルールをもつ,1人で行うゲームを考える.\\
\quad ルール:袋から無作為に 1 枚ずつカードを取り出していく.ただし,一度取
り出したカードは袋に戻さないものとする.取り出したカードの数字の合計がマ
ジックナンバーになったとき,その時点で負けとし,それ以降はカードを取り出
さない.途中で負けとなることなく,すべてのカードを取り出せたとき,勝ちと
する.以下の問に答えよ.

(1)2枚のカードを取り出したところで負けとなる確率を求めよ.
(2)3枚のカードを取り出したところで負けとなる確率を求めよ.
(3)このゲームで勝つ確率を求めよ.
福岡教育大学 国立 福岡教育大学 2011年 第2問
次の問いに答えよ.

(1)数列$\{a_n\}$において,$a_n$は小数第$1$位から小数第$n$位までの数字が$0$で小数第$(n+1)$位から小数第$2n$位までの数字が$9$であり,小数第$(2n+1)$位以降の数字が$0$である実数とする.ただし,$0<a_n<1 \ (n=1,\ 2,\ 3,\ \cdots)$とする.また,数列$\{b_n\}$を,$b_n=10^na_n \ (n=1,\ 2,\ 3,\ \cdots)$で定める.

(i) $b_1,\ b_2,\ b_3$を求め,数列$\{b_n\}$の一般項を求めよ.
(ii) $\displaystyle s_n=\sum_{k=1}^n a_k$とおく.$s_n$を求めよ.
(iii) $\displaystyle \lim_{n \to \infty}s_n$を求めよ.

(2)当たりくじが$k$本入っている$n$本のくじがある.ただし,$n \geqq 2$とする.この中から$2$本のくじを同時に引く.

(i) 少なくとも$1$本当たる確率を,$n$および$k$で表せ.
(ii) $n=21$のとき,少なくとも$1$本当たる確率が$\displaystyle \frac{1}{2}$以上となる最小の$k$を求めよ.
(iii) $n=21$のとき,$2$本とも当たる確率が$\displaystyle \frac{1}{2}$以下となる最大の$k$を求めよ.
愛知県立大学 公立 愛知県立大学 2010年 第1問
袋の中に$1$から$5$までの番号のついた玉がそれぞれ$2$個ずつ入っている.この袋から$1$個ずつ玉を取り出す.ただし,一度取り出した玉は袋に戻さないものとする.このとき以下の問いに答えよ.

(1)$1$回目に取り出した玉の番号と$4$回目に取り出した玉の番号とが同じである確率を求めよ.
(2)$1$回目に取り出した玉の番号が,$4$回目に取り出した玉の番号より大きい確率を求めよ.
(3)$2$回目以降に取り出した玉の番号が,それまでに取り出した玉の番号のいずれかと同じ番号となるまで繰り返すとき,取り出した玉の個数の期待値を求めよ.
スポンサーリンク

「以降」とは・・・

 まだこのタグの説明は執筆されていません。