タグ「交点」の検索結果

94ページ目:全1364問中931問~940問を表示)
早稲田大学 私立 早稲田大学 2012年 第3問
実数係数の$x$の多項式で表された関数$f(x)$は,導関数$f^{\prime}(x)$がすべての実数$x$に対して
$f^\prime (x)>0$をみたし,かつ,$f^\prime (x)$は極大値をもつとする.実数$s$に対して,点$(s,\ f(s))$における曲線$y=f(x)$の接線と$x$軸との交点の$x$座標を$s$の関数として$g(s)$と表す.

(1)導関数$g^\prime(s)$を求めよ.
(2)関数$g(s)$は極大値と極小値をもつことを示せ.
明治大学 私立 明治大学 2012年 第2問
$f(x)=x^3-48x,\ g(x)=9x+k$($k$は定数)がある.以下の問に答えなさい.

(1)$y=f(x)$と$y=g(x)$のグラフが$3$つの異なる交点を持つ必要十分条件は$|k|<[ケ][コ]\sqrt{[サ][シ]}$である.
(2)$y=f(x)$は,$x=a$のとき,極大値$b$をとる.また,$g(a)=c$とする.
$\log_{10}b-7\log_{10}c+7=0$が成立するのは,$k=[ス][セ]$のときである.このとき,$y=f(x)$と$y=g(x)$のグラフは,$3$つの異なる交点をもち,それらの$x$座標の値は,小さい順に並べると$-[ソ],\ -[タ],\ [チ]$となる.
上智大学 私立 上智大学 2012年 第1問
次の各問いに答えなさい.

(1)関数
\[ f(x) = 2\sqrt{3}\,\sin^2\frac{x}{2}-\sin x+a \quad (0 \leqq x \leqq \pi) \]
の最小値が$\sqrt{3}$であるとする.このとき,$a=[ア]$であり,$f(x)$が最小となるのは$x=\displaystyle\frac{\pi}{[イ]}$のときである.
(2) $n$を$5$以上の自然数とする.$1$以上$n$以下の自然数から互いに隣り合わない$2$つを選ぶ組合せは
\[ \frac{1}{[ウ]} \left( n- [エ]\right) \left( n- [オ] \right) \]
通りあり,どの$2$つも隣り合わない$3$つを選ぶ組合せは
\[ \frac{1}{[カ]} \left( n- [キ]\right) \left( n- [ク] \right) \left( n- [ケ] \right) \]
通りある.ただし,$[エ] < [オ], \quad [キ] < [ク] < [ケ]$とする.
(3)三角形$\mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$4:3$に内分する点を$\mathrm{D}$とし,線分$\mathrm{AD}$と$\mathrm{BC}$の交点を$\mathrm{P}$とする.$\mathrm{AP}:\mathrm{PD}=s:(1-s)$,$\mathrm{BP}:\mathrm{PC}=t:(1-t)$とするとき
\[ \displaystyle s=\frac{[コ]}{[サ]}, \quad t=\frac{[シ]}{[ス]} \]
である.また,$\mathrm{OP}$の延長と辺$\mathrm{AB}$との交点を$\mathrm{Q}$とするとき
\[ \overrightarrow{\mathrm{OQ}} = \frac{[セ]}{[ソ]} \overrightarrow{\mathrm{OP}} \]
である.
明治大学 私立 明治大学 2012年 第3問
$xy$平面上の曲線$C:y=x^2$上に,原点$\mathrm{O}$と異なる$2$つの点$\mathrm{P}(s,\ s^2)$,$\mathrm{Q}(t,\ t^2)$がある.ただし,$s \neq t$とする.曲線$C$上の$\mathrm{P}$,$\mathrm{Q}$におけるそれぞれの接線を$\ell_1$,$\ell_2$とし,$\ell_1$,$\ell_2$の$x$軸との交点をそれぞれ$\mathrm{P}_0$,$\mathrm{Q}_0$とする.このとき,次の各設問の$[ ]$にふさわしい解を求め,解答欄に記入せよ.

(1)$\mathrm{P}_0$の座標は$\left( [ ],\ [ ] \right)$となり,$\mathrm{Q}_0$の座標は$\left( [ ],\ [ ] \right)$となる.
(2)$\ell_1$と$\ell_2$の交点$\mathrm{R}$の座標は$\left( [ ],\ [ ] \right)$である.
(3)$\mathrm{P}_0$,$\mathrm{Q}_0$,$\mathrm{R}$を通る円の方程式を
\[ (x-a)^2+(y-b)^2=c^2 \quad \cdots\cdots① \]
とおく.円の方程式$①$が$\mathrm{P}_0$,$\mathrm{Q}_0$を通ることと,$\mathrm{P}_0 \neq \mathrm{Q}_0$であることから
\[ s+t=[ ] \quad \cdots\cdots② \]
となる.
(4)円の方程式$①$が$\mathrm{P}_0$と$\mathrm{R}$を通ることと,$②$と$s \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots③ \]
となる.同じく$\mathrm{Q}_0$と$\mathrm{R}$を通ることと,$②$と$t \neq 0$であることから,$s,\ t,\ a,\ b$の満たす式は
\[ \fbox{\hspace{5cm}\phantom{A}}=0 \quad \cdots\cdots④ \]
となる.$②$,$③$,$④$より,$a \neq 0$のとき
\[ st = \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑤ \]
を得る.同じく$a=0$のときも$⑤$が成り立つことがわかる.
(5)円の方程式$①$が$\mathrm{R}$を通ることを$a,\ b,\ c$を用いて表わすと
\[ \fbox{\hspace{5cm}\phantom{A}} \quad \cdots\cdots⑥ \]
となる.このことは,$①$が定点$\left( [ ],\ [ ] \right)$を通ることを意味する.
東京慈恵会医科大学 私立 東京慈恵会医科大学 2012年 第3問
$n$を$3$以上の整数とする.$xyz$空間の平面$z=0$上に,$1$辺の長さが$4$の正$n$角形$P$があり,$P$の外接円の中心を$\mathrm{G}$とおく.半径$1$の球$B$の中心が$P$の辺に沿って$1$周するとき,$B$が通過してできる立体を$K_n$とする.このとき,次の問いに答えよ.

(1)$P$の隣り合う$2$つの頂点$\mathrm{P}_1$,$\mathrm{P}_2$をとる.$\mathrm{G}$から辺$\mathrm{P}_1 \mathrm{P}_2$に下ろした垂線と$\mathrm{P}_1 \mathrm{P}_2$との交点を$\mathrm{Q}$とするとき,$\mathrm{GQ}>1$となることを示せ.
(2)次の各問に答えよ.

(i) $K_n$を平面$z=t (-1 \leqq t \leqq 1)$で切ったときの断面積$S(t)$を$t$と$n$を用いて表せ.
(ii) $K_n$の体積$V(n)$を$n$を用いて表せ.

(3)$\mathrm{G}$を通り,平面$z=0$に垂直な直線を$\ell$とする.$K_n$を$\ell$のまわりに$1$回転させてできる立体の体積$W(n)$を$n$を用いて表せ.
(4)$\displaystyle\lim_{n \to \infty}\frac{V(n)}{W(n)}$を求めよ.
上智大学 私立 上智大学 2012年 第2問
$1$辺の長さが$\sqrt{2}$の正方形$\mathrm{ABCD}$を底面とし,
\[ \mathrm{PA} = \mathrm{PB} = \mathrm{PC} = \mathrm{PD} = \sqrt{5} \]
である四角錐$\mathrm{PABCD}$を考える.
(図は省略)

(1)四角錐$\mathrm{PABCD}$のすべての面に接する球の中心を$\mathrm{O}$とし,$\mathrm{P}$から底面$\mathrm{ABCD}$に垂線$\mathrm{PH}$を下ろすとき
\[ \mathrm{PH}=[テ],\quad \mathrm{OH}=\frac{[ト]}{[ナ]} \]
である.
(2)辺$\mathrm{PB}$の中点を$\mathrm{Q}$,辺$\mathrm{PD}$の中点を$\mathrm{R}$とする.$3$点$\mathrm{Q}$,$\mathrm{R}$,$\mathrm{C}$を含む平面と辺$\mathrm{PA}$との交点を$\mathrm{S}$とする.このとき
\[ \mathrm{SP}=\frac{[ニ]}{[ヌ]} \sqrt{[ネ]} \]
である.$\mathrm{S}$から線分$\mathrm{AC}$に垂線$\mathrm{ST}$を下ろすとき
\[ \mathrm{ST}=\frac{[ノ]}{[ハ]},\quad \mathrm{CT}=\frac{[ヒ]}{[フ]} \]
である.さらに,四角形$\mathrm{CRSQ}$の面積は
\[ \frac{[ヘ]}{[ホ]} \sqrt{[マ]} \]
である.
法政大学 私立 法政大学 2012年 第3問
関数$y=x^3-(a+2)x+a^2-2a$とそのグラフ$C_a$に対して,次の問いに答えよ.ただし,$a \geqq 1$とする.

(1)$C_a$と直線$x=1$との交点の座標を$(1,\ t)$とするとき,$a$の変化に応じて$t$のとり得る値の範囲を求めよ.
(2)この関数が$x=\sqrt{2}$で極値をとるとき,$a$の値および極大値,極小値を求めよ.
(3)$a=1$としたときのグラフを$C_1$とする.2つのグラフ$C_a$と$C_1$および$y$軸とで囲まれた図形の面積が4となるとき,$a$の値を求めよ.
立教大学 私立 立教大学 2012年 第2問
座標平面上に$2$つの放物線$C_1:y=x^2$と$C_2:y=-x^2+4x+6$がある.$2$つの放物線$C_1$と$C_2$の交点を$\mathrm{P}$,$\mathrm{Q}$とする.ただし,$\mathrm{P}$の$x$座標の値は$\mathrm{Q}$の$x$座標の値よりも小さいものとする.また,放物線$C_2$の頂点を$\mathrm{R}$とし,原点を$\mathrm{O}$とする.このとき,次の問(1)~(3)に答えよ.

(1)$2$点$\mathrm{P}$,$\mathrm{Q}$の座標を求めよ.
(2)線分$\mathrm{OR}$と,$2$つの放物線$C_1$,$C_2$とで囲まれる部分のうち,点$\mathrm{P}$を含む部分の面積を$S$とする.$S$を求めよ.
(3)線分$\mathrm{OR}$の中点を$\mathrm{M}$とする.線分$\mathrm{OM}$と線分$\mathrm{MQ}$と$C_1$とで囲まれる部分の面積を$T$とする.$T$を求めよ.
法政大学 私立 法政大学 2012年 第1問
$A=105^\circ$,$B=30^\circ$,$b=2\sqrt{2}$の三角形$\mathrm{ABC}$について,つぎの問いに答えよ.ただし,$b$は辺$\mathrm{AC}$の長さを表すものとする.

(1)$\sin 105^\circ$の値を求めよ.
(2)外接円の半径,および,辺$\mathrm{BC}$の長さを求めよ.
(3)$\mathrm{A}$から辺$\mathrm{BC}$に延ばした直線と辺$\mathrm{BC}$の交点を$\mathrm{P}$とする.三角形$\mathrm{ABP}$の外接円の半径が$3$のとき,$\mathrm{PC}$の長さを求めよ.
倉敷芸術科学大学 私立 倉敷芸術科学大学 2012年 第5問
次の設問に答えよ.

(1)放物線$y=x^2+ax+b$は$2$点$(-1,\ 9),\ (1,\ 1)$を通る.このとき,定数$a,\ b$の値を求めよ.
(2)(1)の放物線と,放物線$y = -x^2 +4$の交点の座標を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。