タグ「交点」の検索結果

54ページ目:全1364問中531問~540問を表示)
北星学園大学 私立 北星学園大学 2014年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=3$,$\mathrm{BC}=7$,$\mathrm{CA}=5$とする.以下の問に答えよ.

(1)$\angle \mathrm{A}$の大きさを求めよ.
(2)外接円の半径を求めよ.
(3)$\angle \mathrm{A}$の$2$等分線と$\mathrm{BC}$との交点を$\mathrm{D}$とするとき,$\mathrm{AD}$の長さを求めよ.
東北工業大学 私立 東北工業大学 2014年 第1問
$x$の$2$次関数$y=x^2-4px+(4p+5)(p-1)$について考える.

(1)この関数のグラフの軸は直線$x=[ア][イ]p$である.
(2)$p=3$のとき,この関数は最小値$-[ウ][エ]$をとり,そのグラフと$y$軸との交点の$y$座標は$[オ][カ]$である.
(3)この関数のグラフが$x$軸の正の部分と異なる$2$点で交わるとき,$[キ][ク]<p<[ケ][コ]$である.
東北工業大学 私立 東北工業大学 2014年 第2問
三角形$\mathrm{ABC}$において,$3$つの角の大きさの比$A:B:C$が$2:3:7$であるとする.また,頂点$\mathrm{C}$から辺$\mathrm{AB}$におろした垂線と辺$\mathrm{AB}$との交点を$\mathrm{D}$としたとき$\mathrm{BD}=\sqrt{10}$である.

(1)$\mathrm{BC}=2 \sqrt{[サ][シ]}$,$\mathrm{AD}=\sqrt{[ス][セ]}$である.
(2)三角形$\mathrm{ABC}$の面積は$5+5 \sqrt{[ソ][タ]}$である.
(3)三角形$\mathrm{ABC}$が内接する円の面積は$[チ][ツ] \pi$である.ただし,$\pi$は円周率を表す.
(4)$\displaystyle \cos C=\frac{\sqrt{2}-\sqrt{[テ][ト]}}{4}$である.
北海道薬科大学 私立 北海道薬科大学 2014年 第3問
円$(x-2)^2+(y-3)^2=9$と放物線$y=x^2-4x+a+4$($a$は定数)は,$2$つの点で接している.

(1)$a$の値は$\displaystyle \frac{[アイウ]}{[エ]}$である.
(2)接点の座標は$\displaystyle \left( [オ] \pm \frac{\sqrt{[カキ]}}{[ク]},\ \frac{[ケ]}{[コ]} \right)$であり,$2$つの接線の方程式は$y=\pm \sqrt{[サシ]}(x-[ス])+[セソタ]$である(複号同順).
(3)$(2)$で得られた$2$つの接線の交点の座標は$([チ],\ [ツテト])$である.
神戸薬科大学 私立 神戸薬科大学 2014年 第8問
四角形$\mathrm{ABCD}$において,$\displaystyle \overrightarrow{\mathrm{AD}}=\frac{3}{4} \overrightarrow{\mathrm{BC}}$のとき,線分$\mathrm{AC}$と線分$\mathrm{BD}$の交点を$\mathrm{E}$とする.$\mathrm{E}$を通り辺$\mathrm{AD}$に平行に直線を引いたときの辺$\mathrm{AB}$と辺$\mathrm{CD}$との交点をそれぞれ$\mathrm{F}$,$\mathrm{G}$とする.このとき,次のベクトルを$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AD}}$を用いて表せ.

(1)$\overrightarrow{\mathrm{AE}}=[ヌ]$
(2)$\overrightarrow{\mathrm{AG}}=[ネ]$
近畿大学 私立 近畿大学 2014年 第2問
$s$を$0<s<1$の範囲にある実数とする.$\triangle \mathrm{ABC}$において辺$\mathrm{AC}$を$2:3$に内分する点を$\mathrm{D}$,辺$\mathrm{BC}$を$s:1-s$に内分する点を$\mathrm{E}$とする.また線分$\mathrm{BD}$と線分$\mathrm{AE}$の交点を$\mathrm{F}$とする.次の問に答えよ.

(1)$\overrightarrow{\mathrm{AF}}=k \overrightarrow{\mathrm{AE}}$とおく.$k$を$s$を用いて表せ.
(2)$\triangle \mathrm{AFD}$の面積が$\triangle \mathrm{EFB}$の面積の$2$倍になるように$s$を定めよ.
(3)$\mathrm{AB}=3$,$\mathrm{AC}=2$,$\angle \mathrm{BAC}=60^\circ$とする.$\overrightarrow{\mathrm{AE}} \perp \overrightarrow{\mathrm{BC}}$となるように$s$を定めよ.
埼玉工業大学 私立 埼玉工業大学 2014年 第2問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$2:1$に内分する点を$\mathrm{M}$,辺$\mathrm{OB}$を$2:3$に内分する点を$\mathrm{N}$とし,線分$\mathrm{AN}$と線分$\mathrm{BM}$の交点を$\mathrm{P}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{AP}}=x \overrightarrow{\mathrm{AN}}$,$\overrightarrow{\mathrm{BP}}=y \overrightarrow{\mathrm{BM}}$($x,\ y$は実数)とおくとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OP}}$を$x,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=(1-[コ]x) \overrightarrow{a}+\frac{[サ]}{[シ]} x \overrightarrow{b}$である.
(2)$\overrightarrow{\mathrm{OP}}$を$y,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表すと,$\displaystyle \overrightarrow{\mathrm{OP}}=\frac{[ス]}{[セ]} y \overrightarrow{a}+(1-[ソ] y) \overrightarrow{b}$である.
(3)$x,\ y$の値はそれぞれ$\displaystyle x=\frac{[タ]}{[チツ]},\ y=\frac{[テ]}{[トナ]}$である.
(4)$\triangle \mathrm{OPN}$の面積は$\triangle \mathrm{OAB}$の面積の$\displaystyle \frac{[ニヌ]}{[ネノ]}$倍である.
金沢工業大学 私立 金沢工業大学 2014年 第1問
次の問いに答えよ.

(1)$p=(\sqrt{3}+\sqrt{5})^2$,$q=(\sqrt{3}-\sqrt{5})^2$のとき$p+q=[アイ]$,$pq=[ウ]$,$p^2+q^2=[エオカ]$である.

(2)連立不等式$\left\{ \begin{array}{r}
|2x-9| \leqq 5 \\
9-2x \leqq 4
\end{array} \right.$の解は$\displaystyle \frac{[キ]}{[ク]} \leqq x \leqq [ケ]$である.

(3)$(2x-1)^5(y-2)^4$の展開式における$x^2y^3$の項の係数は$[コサシ]$である.
(4)${0}^\circ<\theta<{90}^\circ$で,$\displaystyle \tan \theta=\frac{4}{3}$のとき,
\[ \frac{\sin (\theta+{90}^\circ)+\tan (\theta+{90}^\circ)}{\sin ({180}^\circ-\theta)+\tan ({180}^\circ-\theta)}=\frac{[ス]}{[セソ]} \]
である.
(5)$p,\ q$を定数とし,$q<0$とする.$2$次関数$y=px^2+qx+2q$のグラフの頂点の座標が$(-4q,\ -40)$のとき,$\displaystyle p=\frac{[タ]}{[チ]}$,$q=[ツテ]$である.
(6)赤玉が$5$個,白玉が$3$個入っている袋がある.この袋の中から玉を同時に$2$個取り出すとき,少なくとも$1$個が白玉である確率は$\displaystyle \frac{[ト]}{[ナニ]}$である.
(7)$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の$3$個のさいころを同時に投げて,それぞれの出る目を$a,\ b,\ c$とする.このとき,積$abc$が奇数になる組$(a,\ b,\ c)$は$[ヌネ]$組あり,偶数になる組$(a,\ b,\ c)$は$[ノハヒ]$組ある.
(8)$\triangle \mathrm{ABC}$において,$\mathrm{AP}:\mathrm{PB}=\mathrm{AQ}:\mathrm{QC}=1:3$となるように点$\mathrm{P}$を辺$\mathrm{AB}$上に,点$\mathrm{Q}$を辺$\mathrm{AC}$上にとる.線分$\mathrm{BQ}$と線分$\mathrm{CP}$の交点を$\mathrm{R}$とすると,$\displaystyle \triangle \mathrm{PQR}=\frac{[フ]}{[ヘホ]} \triangle \mathrm{BCR}$である.
福岡大学 私立 福岡大学 2014年 第2問
$a>0$とする.点$\mathrm{A}(a,\ a)$と直線$y=3x$との距離を$a$を用いて表すと$[ ]$である.また,点$\mathrm{A}$を中心とし原点$\mathrm{O}$を通る円と直線$y=3x$との原点以外の交点を$\mathrm{P}$とするとき,$\mathrm{OP}=\sqrt{5}$ならば,$a=[ ]$である.
京都薬科大学 私立 京都薬科大学 2014年 第3問
$\triangle \mathrm{OAB}$において,$\mathrm{OA}=1$,$\mathrm{OB}=2$,$\angle \mathrm{AOB}=\theta$とする.$\angle \mathrm{AOB}$の二等分線と辺$\mathrm{AB}$との交点を$\mathrm{C}$とする.次の$[ ]$にあてはまる数または式を記入せよ.ただし,$[ク]$~$[サ]$には整数を記入しなさい.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OC}}=[ア] \overrightarrow{\mathrm{OA}}+[イ] \overrightarrow{\mathrm{OB}} \]
となる.
(2)直線$\mathrm{OC}$上に点$\mathrm{P}$をとり,さらに点$\mathrm{P}$が辺$\mathrm{AB}$の垂直二等分線上にあるとき,$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$および$\cos \theta$を用いて表すと,
\[ \overrightarrow{\mathrm{OP}}=[ウ] \overrightarrow{\mathrm{OA}}+[エ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\mathrm{OC}:\mathrm{CP}=3:1$となるならば,$\cos \theta=[オ]$である.
(3)辺$\mathrm{OB}$上に点$\mathrm{D}$を$\mathrm{OD}:\mathrm{DB}=1:3$となるようにとる.線分$\mathrm{AD}$と線分$\mathrm{OC}$の交点を$\mathrm{Q}$とし,$\overrightarrow{\mathrm{OQ}}$を$\overrightarrow{\mathrm{OA}}$と$\overrightarrow{\mathrm{OB}}$を用いて表すと,
\[ \overrightarrow{\mathrm{OQ}}=[カ] \overrightarrow{\mathrm{OA}}+[キ] \overrightarrow{\mathrm{OB}} \]
となる.このとき,$\triangle \mathrm{OAQ}$,$\triangle \mathrm{QAC}$,$\triangle \mathrm{OQD}$および四角形$\mathrm{QCBD}$の面積をそれぞれ,$S_1,\ S_2,\ S_3,\ S_4$とすると,$S_1:S_2:S_3:S_4=[ク]:[ケ]:[コ]:[サ]$となる.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。