タグ「交点」の検索結果

24ページ目:全1364問中231問~240問を表示)
福岡教育大学 国立 福岡教育大学 2015年 第3問
平面上に$\triangle \mathrm{ABC}$と点$\mathrm{O}$がある.$\triangle \mathrm{ABC}$の内部に点$\mathrm{D}$があって,三角形の面積比が
\[ \triangle \mathrm{DBC}:\triangle \mathrm{DCA}:\triangle \mathrm{DAB}=p:q:r \]
であるとする.次の問いに答えよ.

(1)直線$\mathrm{AD}$と辺$\mathrm{BC}$の交点を$\mathrm{S}$,直線$\mathrm{BD}$と辺$\mathrm{AC}$の交点を$\mathrm{T}$とするとき,$\mathrm{BS}:\mathrm{SC}$および$\mathrm{CT}:\mathrm{TA}$を$p,\ q,\ r$を用いて表せ.

(2)$\displaystyle \overrightarrow{\mathrm{OD}}=\frac{p \overrightarrow{\mathrm{OA}}+q \overrightarrow{\mathrm{OB}}+r \overrightarrow{\mathrm{OC}}}{p+q+r}$となることを示せ.
東京海洋大学 国立 東京海洋大学 2015年 第4問
座標平面上の曲線$y=x^2(1-x)$を$C$とし,直線$y=-x$を$\ell$とする.数列$\{a_n\} (n=1,\ 2,\ 3,\ \cdots)$を次のように定める.$\displaystyle a_1=\frac{2}{5}$とし,$x=a_n (n=1,\ 2,\ 3,\ \cdots)$における$C$の接線と$\ell$の交点の$x$座標を$a_{n+1}$とする.このとき次の問に答えよ.

(1)$n$を自然数とするとき,$a_{n+1}$を$a_n$で表せ.
(2)$n$を自然数とするとき,$0<a_{n+1}<{a_n}^2$を示せ.
富山大学 国立 富山大学 2015年 第1問
$m$を実数とする.方程式
\[ mx^2-my^2+(1-m^2)xy+5(1+m^2)y-25m=0 \cdots\cdots (*) \]
を考える.このとき,次の問いに答えよ.

(1)$xy$平面において,方程式$(*)$が表す図形は$2$直線であることを示せ.
(2)$(1)$で求めた$2$直線は$m$の値にかかわらず,それぞれ定点を通る.これらの定点を求めよ.
(3)$m$が$-1 \leqq m \leqq 3$の範囲を動くとき,$(1)$で求めた$2$直線の交点の軌跡を図示せよ.
愛媛大学 国立 愛媛大学 2015年 第2問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
愛媛大学 国立 愛媛大学 2015年 第4問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
群馬大学 国立 群馬大学 2015年 第5問
点$\mathrm{P}(0,\ 4)$を通る傾き$\displaystyle \frac{1}{5}$の直線を$\ell$とし,曲線$y=|x(x-4)|$を$C$とする.

(1)$\ell$と$C$の第$1$象限における交点$\mathrm{Q}$を求めよ.
(2)$C$と線分$\mathrm{PQ}$および$y$軸で囲まれた部分の面積を求めよ.
群馬大学 国立 群馬大学 2015年 第4問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
群馬大学 国立 群馬大学 2015年 第3問
座標平面上の楕円$\displaystyle x^2+\frac{y^2}{9}=1$を$C$とし,点$\mathrm{P}(\alpha,\ \beta)$を$\alpha>0$,$\beta>0$を満たす$C$上の点とする.点$\mathrm{P}$における$C$の接線$\ell$と$x$軸,$y$軸との交点をそれぞれ$\mathrm{Q}$,$\mathrm{R}$とおく.

(1)$\ell$の方程式を$\alpha,\ \beta$を用いて表せ.
(2)線分$\mathrm{QR}$の長さの$2$乗を$\alpha$を用いて表せ.
(3)線分$\mathrm{QR}$の長さの最小値を求めよ.
愛媛大学 国立 愛媛大学 2015年 第1問
$t$を実数とする.座標空間内に$4$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(3,\ 0,\ 0)$,$\mathrm{C}(-1,\ 6,\ -2)$,$\mathrm{D}(t,\ -2,\ 4)$がある.図のような平行六面体$\mathrm{OABC}$-$\mathrm{DEFG}$において,点$\mathrm{P}$が平行四辺形$\mathrm{DEFG}$の周および内部を動くとき,$\triangle \mathrm{OCP}$の面積$S$の最小値を$m$とする.また,平行四辺形$\mathrm{DEFG}$を含む平面を$\alpha$とし,点$\mathrm{O}$から平面$\alpha$に下ろした垂線と平面$\alpha$との交点を$\mathrm{Q}$とする.
(図は省略)

(1)平行四辺形$\mathrm{OABC}$を含む平面に垂直な単位ベクトル$\overrightarrow{u}$で,その$z$成分が正となるものを求めよ.
(2)線分$\mathrm{OQ}$の長さを求めよ.
(3)点$\mathrm{Q}$が平行四辺形$\mathrm{DEFG}$の周または内部にあるとき,$t$のとり得る値の範囲を求めよ.
(4)$t$が$(3)$で求めた範囲にあるとき,$m$の値および$S=m$となる点$\mathrm{P}$の座標をすべて求めよ.
愛媛大学 国立 愛媛大学 2015年 第3問
$n$を自然数とし,曲線$\displaystyle y=n \sin \frac{x}{n}$と円$x^2+y^2=1$の第$1$象限における交点の座標を$(p_n,\ q_n)$とする.

(1)$x>0$のとき,不等式$\displaystyle n \sin \frac{x}{n}<x$が成り立つことを示せ.
(2)不等式$\displaystyle p_n>\frac{1}{\sqrt{2}}$が成り立つことを示せ.
(3)$0 \leqq x \leqq 1$のとき,不等式
\[ (*) \quad \left( n \sin \frac{1}{n} \right) x \leqq n \sin \frac{x}{n} \]
が成り立つことを利用して,次の$(ⅰ)$,$(ⅱ)$に答えよ.

(i) 不等式$\displaystyle p_n \leqq \frac{1}{\sqrt{1+n^2 \sin^2 \displaystyle\frac{1}{n}}}$が成り立つことを示せ.
(ii) $x$軸,直線$x=p_n$,および曲線$\displaystyle y=n \sin \frac{x}{n} (0 \leqq x \leqq p_n)$で囲まれた領域の面積を$S_n$とするとき,$S_n$を$p_n$を用いて表せ.また,$\displaystyle \lim_{n \to \infty} S_n$を求めよ.

(4)$0 \leqq x \leqq 1$のとき,$(3)$の不等式$(*)$が成り立つことを示せ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。