タグ「交点」の検索結果

20ページ目:全1364問中191問~200問を表示)
大阪大学 国立 大阪大学 2015年 第3問
平面上に長さ$2$の線分$\mathrm{AB}$を直径とする円$C$がある.$2$点$\mathrm{A}$,$\mathrm{B}$を除く$C$上の点$\mathrm{P}$に対し,$\mathrm{AP}=\mathrm{AQ}$となるように線分$\mathrm{AB}$上の点$\mathrm{Q}$をとる.また,直線$\mathrm{PQ}$と円$C$の交点のうち,$\mathrm{P}$でない方を$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$\triangle \mathrm{AQR}$の面積を$\theta=\angle \mathrm{PAB}$を用いて表せ.
(2)点$\mathrm{P}$を動かして$\triangle \mathrm{AQR}$の面積が最大になるとき,$\overrightarrow{\mathrm{AR}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AP}}$を用いて表せ.
北海道大学 国立 北海道大学 2015年 第3問
空間の$3$点$\mathrm{O}(0,\ 0,\ 0)$,$\mathrm{A}(1,\ 1,\ 1)$,$\mathrm{B}(-1,\ 1,\ 1)$の定める平面を$\alpha$とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とおく.$\alpha$上の点$\mathrm{C}$があり,その$x$座標が正であるとする.ベクトル$\overrightarrow{\mathrm{OC}}$が$\overrightarrow{a}$に垂直で,大きさが$1$であるとする.$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおく.

(1)$\mathrm{C}$の座標を求めよ.
(2)$\overrightarrow{b}=s \overrightarrow{a}+t \overrightarrow{c}$をみたす実数$s,\ t$を求めよ.
(3)$\alpha$上にない点$\mathrm{P}(x,\ y,\ z)$から$\alpha$に垂線を下ろし,$\alpha$との交点を$\mathrm{H}$とする.$\overrightarrow{\mathrm{OH}}=k \overrightarrow{a}+l \overrightarrow{c}$をみたす実数$k,\ l$を$x,\ y,\ z$で表せ.
広島大学 国立 広島大学 2015年 第3問
座標空間内に$5$点
\[ \mathrm{O}(0,\ 0,\ 0),\quad \mathrm{A} \left(0,\ 0,\ \frac{3}{4} \right),\quad \mathrm{B}\left( \frac{1}{2},\ 0,\ \frac{1}{2} \right),\quad \mathrm{C}(s,\ t,\ 0),\quad \mathrm{D}(0,\ u,\ 0) \]
がある.ただし,$s,\ t,\ u$は実数で,$s>0$,$t>0$,$s+t=1$を満たすとする.$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$の定める平面が$y$軸と点$\mathrm{D}$で交わっているとき,次の問いに答えよ.

(1)直線$\mathrm{AB}$と$x$軸との交点の$x$座標を求めよ.
(2)$u$を$t$を用いて表せ.また,$0<u<1$であることを示せ.
(3)点$(0,\ 1,\ 0)$を$\mathrm{E}$とする.点$\mathrm{D}$が線分$\mathrm{OE}$を$12:1$に内分するとき,$t$の値を求めよ.
神戸大学 国立 神戸大学 2015年 第1問
座標平面上の$2$つの曲線$\displaystyle y=\frac{x-3}{x-4}$,$\displaystyle y=\frac{1}{4}(x-1)(x-3)$をそれぞれ$C_1$,$C_2$とする.以下の問に答えよ.

(1)$2$曲線$C_1$,$C_2$の交点をすべて求めよ.
(2)$2$曲線$C_1$,$C_2$の概形をかき,$C_1$と$C_2$で囲まれた図形の面積を求めよ.
広島大学 国立 広島大学 2015年 第4問
$\alpha,\ \beta$は$\alpha>0$,$\beta>0$,$\alpha+\beta<1$を満たす実数とする.三つの放物線
\[ C_1:y=x(1-x),\quad C_2:y=x(1-\beta-x),\quad C_3:y=(x-\alpha)(1-x) \]
を考える.$C_2$と$C_3$の交点の$x$座標を$\gamma$とする.また,$C_1$,$C_2$,$C_3$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\gamma$を$\alpha,\ \beta$を用いて表せ.
(2)$S$を$\alpha,\ \beta$を用いて表せ.
(3)$\alpha,\ \beta$が$\displaystyle \alpha+\beta=\frac{1}{4}$を満たしながら動くとき,$S$の最大値を求めよ.
金沢大学 国立 金沢大学 2015年 第2問
$a,\ b$は定数で,$ab>0$とする.放物線$C_1:y=ax^2+b$上の点$\mathrm{P}(t,\ at^2+b)$における接線を$\ell$とし,放物線$C_2:y=ax^2$と$\ell$で囲まれた図形の面積を$S$とする.次の問いに答えよ.

(1)$\ell$の方程式を求めよ.
(2)$\ell$と$C_2$のすべての交点の$x$座標を求めよ.
(3)点$\mathrm{P}$が$C_1$上を動くとき,$S$は点$\mathrm{P}$の位置によらず一定であることを示せ.
広島大学 国立 広島大学 2015年 第1問
座標平面上の点$\mathrm{P}(1,\ 1)$を中心とし,原点$\mathrm{O}$を通る円を$C_1$とする.$k$を正の定数として,曲線$\displaystyle y=\frac{k}{x} (x>0)$を$C_2$とする.$C_1$と$C_2$は$2$点で交わるとし,その交点を$\mathrm{Q}$,$\mathrm{R}$とするとき,直線$\mathrm{PQ}$は$x$軸に平行であるとする.点$\mathrm{Q}$の$x$座標を$q$とし,点$\mathrm{R}$の$x$座標を$r$とする.次の問いに答えよ.

(1)$k,\ q,\ r$の値を求めよ.
(2)曲線$C_2$と線分$\mathrm{OQ}$,$\mathrm{OR}$で囲まれた部分の面積$S$を求めよ.
(3)$x=1+\sqrt{2} \sin \theta$とおくことにより,定積分$\displaystyle \int_r^q \sqrt{2-(x-1)^2} \, dx$の値を求めよ.
(4)円$C_1$の原点$\mathrm{O}$を含まない弧$\mathrm{QR}$と曲線$C_2$で囲まれた図形を,$x$軸のまわりに$1$回転してできる回転体の体積$V$を求めよ.
広島大学 国立 広島大学 2015年 第2問
座標平面上の放物線
\[ C_n:y=x^2-p_nx+q_n \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を考える.ただし,$p_n,\ q_n$は
\[ p_1^2-4q_1=4,\quad p_n^2-4q_n>0 \qquad (n=2,\ 3,\ 4,\ \cdots) \]
を満たす実数とする.$C_n$と$x$軸との二つの交点を結ぶ線分の長さを$\ell_n$とする.また,$C_n$と$x$軸で囲まれた部分の面積$S_n$は
\[ \frac{S_{n+1}}{S_n}=\left( \frac{n+2}{\sqrt{n(n+1)}} \right)^3 \qquad (n=1,\ 2,\ 3,\ \cdots) \]
を満たすとする.次の問いに答えよ.

(1)$C_n$の頂点の$y$座標を$\ell_n$を用いて表せ.
(2)数列$\{\ell_n\}$の一般項を求めよ.
(3)$p_n=n \sqrt{n} (n=1,\ 2,\ 3,\ \cdots)$であるとき,$\displaystyle \lim_{n \to \infty} n \log \left( -\frac{2q_n}{n^2} \right)$を求めよ.ただし,$\log x$は$x$の自然対数である.
神戸大学 国立 神戸大学 2015年 第2問
座標平面上の楕円$\displaystyle \frac{x^2}{4}+y^2=1$を$C$とする.$a>2$,$0<\theta<\pi$とし,$x$軸上の点$\mathrm{A}(a,\ 0)$と楕円$C$上の点$\mathrm{P}(2 \cos \theta,\ \sin \theta)$をとる.原点を$\mathrm{O}$とし,直線$\mathrm{AP}$と$y$軸との交点を$\mathrm{Q}$とする.点$\mathrm{Q}$を通り$x$軸に平行な直線と,直線$\mathrm{OP}$との交点を$\mathrm{R}$とする.以下の問に答えよ.

(1)点$\mathrm{R}$の座標を求めよ.
(2)$(1)$で求めた点$\mathrm{R}$の$y$座標を$f(\theta)$とする.このとき,$0<\theta<\pi$における$f(\theta)$の最大値を求めよ.
(3)原点$\mathrm{O}$と点$\mathrm{R}$の距離の$2$乗を$g(\theta)$とする.このとき,$0<\theta<\pi$における$g(\theta)$の最小値を求めよ.
広島大学 国立 広島大学 2015年 第3問
座標平面上に原点$\mathrm{O}$と$2$点$\mathrm{A}(1,\ 0)$,$\mathrm{B}(0,\ 1)$をとり,$\overrightarrow{a}=\overrightarrow{\mathrm{OA}}$,$\overrightarrow{b}=\overrightarrow{\mathrm{OB}}$とする.点$\mathrm{C}$は$|\overrightarrow{\mathrm{OC}}|=1$,$0^\circ<\angle \mathrm{AOC}<{90}^\circ$,$0^\circ<\angle \mathrm{BOC}<{90}^\circ$を満たすとする.$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=t$とするとき,次の問いに答えよ.

(1)$\overrightarrow{\mathrm{OC}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(2)線分$\mathrm{AB}$と線分$\mathrm{OC}$の交点を$\mathrm{D}$とする.$\overrightarrow{\mathrm{OD}}$を$\overrightarrow{a}$,$\overrightarrow{b}$,$t$を用いて表せ.
(3)点$\mathrm{C}$から線分$\mathrm{OA}$に引いた垂線と線分$\mathrm{AB}$の交点を$\mathrm{E}$とする.$\mathrm{D}$は$(2)$で定めた点とする.このとき,$\triangle \mathrm{OBD}$と$\triangle \mathrm{CDE}$の面積の和を$t$を用いて表せ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。