タグ「交点」の検索結果

2ページ目:全1364問中11問~20問を表示)
岡山大学 国立 岡山大学 2016年 第2問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s,\ t$をそれぞれ$u,\ v$を用いて表せ.
(3)点$\mathrm{P}$が$xy$平面内の直線$ax+by=1 (a^2+b^2 \neq 0)$上を動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
岡山大学 国立 岡山大学 2016年 第4問
座標空間内に,原点$\mathrm{O}(0,\ 0,\ 0)$を中心とする半径$1$の球面$S$と$2$点$\mathrm{A}(0,\ 0,\ 1)$,$\mathrm{B}(0,\ 0,\ -1)$がある.$\mathrm{O}$と異なる点$\mathrm{P}(s,\ t,\ 0)$に対し,直線$\mathrm{AP}$と球面$S$の交点で$\mathrm{A}$と異なる点を$\mathrm{Q}$とする.さらに直線$\mathrm{BQ}$と$xy$平面の交点を$\mathrm{R}(u,\ v,\ 0)$とする.このとき以下の問いに答えよ.

(1)ふたつの線分$\mathrm{OP}$と$\mathrm{OR}$の長さの積を求めよ.
(2)$s$を$u,\ v$を用いて表せ.
(3)$\ell$は$xy$平面内の直線で,原点$\mathrm{O}$を通らないものとする.直線$\ell$上を点$\mathrm{P}$が動くとき,対応する点$\mathrm{R}$は$xy$平面内の同一円周上にあることを証明せよ.
九州大学 国立 九州大学 2016年 第2問
$t$を$0<t<1$を満たす実数とする.面積が$1$である三角形$\mathrm{ABC}$において,辺$\mathrm{AB}$,$\mathrm{BC}$,$\mathrm{CA}$をそれぞれ$2:1$,$t:1-t$,$1:3$に内分する点を$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$とする.また,$\mathrm{AE}$と$\mathrm{BF}$,$\mathrm{BF}$と$\mathrm{CD}$,$\mathrm{CD}$と$\mathrm{AE}$の交点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.このとき,以下の問いに答えよ.

(1)$3$直線$\mathrm{AE}$,$\mathrm{BF}$,$\mathrm{CD}$が$1$点で交わるときの$t$の値$t_0$を求めよ.



以下,$t$は$0<t<t_0$を満たすものとする.


\mon[$(2)$] $\mathrm{AP}=k \mathrm{AE}$,$\mathrm{CR}=\ell \mathrm{CD}$を満たす実数$k,\ \ell$をそれぞれ求めよ.
\mon[$(3)$] 三角形$\mathrm{BCQ}$の面積を求めよ.
\mon[$(4)$] 三角形$\mathrm{PQR}$の面積を求めよ.
埼玉大学 国立 埼玉大学 2016年 第3問
次の問いに答えよ.

(1)$\displaystyle f(x)=\frac{e^x}{x^2+3x+1}$とする.$x>0$の範囲で$f(x)$が最小になる$x$の値と,そのときの$f(x)$の値を求めよ.
(2)$a>0$とする.曲線$\displaystyle C:y=\frac{1}{x} (x>0)$と$2$つの直線$\ell_1:y=2e^ax$,$\ell_2:y=(a^2+3a+1)x$を考える.$C$と$\ell_1$と$\ell_2$で囲まれる部分を$D$とする.

\mon[(ア)] $C$と$\ell_1$の交点,および,$C$と$\ell_2$の交点の座標を求めよ.
\mon[(イ)] $(1)$を用いて$2e^a>a^2+3a+1$であることを示せ.ただし,$e=2.7182 \cdots$であることは用いてよい.
\mon[(ウ)] $D$の面積を$a$を用いて表せ.
\mon[(エ)] $D$の面積を最小にする$a$の値と,そのときの$D$の面積を求めよ.
室蘭工業大学 国立 室蘭工業大学 2016年 第1問
$a,\ b,\ c$を定数とし,$a \neq 0$とする.関数$f(x)$を
\[ f(x)=ax^2+bx+c \]
と定める.放物線$y=f(x)$の頂点の$x$座標を$x=1$とする.また,放物線$y=f(x)$と直線$y=x$の交点の$x$座標を$x=2$と$x=-3$とする.

(1)$a,\ b,\ c$の値を求めよ.
(2)放物線$y=f(x)$と関数$y=|x|$のグラフの交点をすべて求めよ.
(3)放物線$y=f(x)$と関数$y=|x|$のグラフで囲まれた図形の面積$S$を求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第7問
点$\mathrm{O}$を中心とする半径$1$の円に内接する鋭角三角形$\mathrm{ABC}$において,辺$\mathrm{BC}$と直線$\mathrm{AO}$との交点を$\mathrm{M}$とする.$5 \overrightarrow{\mathrm{OA}}+4 \overrightarrow{\mathrm{OB}}+3 \overrightarrow{\mathrm{OC}}=\overrightarrow{\mathrm{0}}$が成り立っているとき,次の問いに答えよ.

(1)内積$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}$を求めよ.
(2)$\mathrm{BC}$の長さを求めよ.
(3)$\mathrm{BM}$の長さを求めよ.
(4)$\cos \angle \mathrm{BOM}$を求めよ.
岐阜大学 国立 岐阜大学 2016年 第5問
$\triangle \mathrm{OAB}$において,辺$\mathrm{OA}$を$1:3$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$1:2$に内分する点を$\mathrm{D}$,線分$\mathrm{AD}$の中点を$\mathrm{E}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とする.以下の問に答えよ.

(1)$\overrightarrow{\mathrm{CE}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)直線$\mathrm{CE}$と辺$\mathrm{AB}$の交点を$\mathrm{F}$とする.$\overrightarrow{\mathrm{CF}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(3)辺$\mathrm{AB}$を$7:1$に外分する点を$\mathrm{G}$とする.$\overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(4)内積$\overrightarrow{\mathrm{CE}} \cdot \overrightarrow{\mathrm{EG}}$を$\overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(5)$\triangle \mathrm{OAB}$を$\mathrm{OA}=\mathrm{OB}$となる直角二等辺三角形とするとき,$\angle \mathrm{CEG}$の大きさを求めよ.
愛知教育大学 国立 愛知教育大学 2016年 第1問
平面上で,半径$r_1$の円$C_1$と半径$r_2$の円$C_2$が,異なる$2$点$\mathrm{P}$,$\mathrm{Q}$で交わっているとする.線分$\mathrm{PQ}$の垂直二等分線を$\ell$として,円$C_1$と$\ell$の交点のうち円$C_2$の内部にある点を$\mathrm{R}$,円$C_2$と$\ell$の交点のうち円$C_1$の外部にある点を$\mathrm{S}$とする.

(1)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{2},\ \angle \mathrm{PSQ}=\frac{\pi}{6}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(2)$\displaystyle \angle \mathrm{PRQ}=\frac{\pi}{3},\ \angle \mathrm{PSQ}=\frac{\pi}{4}$のとき,$\displaystyle \frac{r_2}{r_1}$を求めよ.

(3)$\displaystyle \angle \mathrm{PRQ}=\theta_1,\ \angle \mathrm{PSQ}=\theta_2$とするとき,$\displaystyle \frac{r_2}{r_1}$を$\theta_1$と$\theta_2$を用いて表せ.
室蘭工業大学 国立 室蘭工業大学 2016年 第5問
$\triangle \mathrm{OAB}$が$|\overrightarrow{\mathrm{OA|}}=4$,$|\overrightarrow{\mathrm{OB|}}=3$,$\angle \mathrm{AOB}={60}^\circ$を満たすとする.また,$\angle \mathrm{AOB}$の二等分線と点$\mathrm{A}$から辺$\mathrm{OB}$への垂線との交点を$\mathrm{P}$とする.

(1)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{\mathrm{OA}}$,$\overrightarrow{\mathrm{OB}}$を用いて表せ.
(2)面積の比$\triangle \mathrm{POA}:\triangle \mathrm{PAB}:\triangle \mathrm{PBO}$を求めよ.
山形大学 国立 山形大学 2016年 第3問
$\triangle \mathrm{ABC}$において,$\mathrm{AB}=\sqrt{3}$,$\mathrm{BC}=\sqrt{5}$,$\mathrm{AC}=2$とする.辺$\mathrm{BC}$上に点$\mathrm{B}$と異なる点$\mathrm{P}$があり,$\mathrm{AP}=\sqrt{3}$とする.また,辺$\mathrm{AB}$の中点を$\mathrm{Q}$,線分$\mathrm{AP}$と線分$\mathrm{CQ}$との交点を$\mathrm{R}$とする.このとき,次の問に答えよ.

(1)内積$\overrightarrow{\mathrm{AB}} \cdot \overrightarrow{\mathrm{AC}}$と$\triangle \mathrm{ABC}$の面積$S$を求めよ.
(2)$\overrightarrow{\mathrm{AP}}$を$\overrightarrow{\mathrm{AB}}$と$\overrightarrow{\mathrm{AC}}$を用いて表せ.
(3)$\triangle \mathrm{AQR}$の面積$T$を求めよ.
スポンサーリンク

「交点」とは・・・

 まだこのタグの説明は執筆されていません。