タグ「二等辺三角形」の検索結果

2ページ目:全74問中11問~20問を表示)
筑波大学 国立 筑波大学 2015年 第2問
半径$1$の円を内接円とする三角形$\mathrm{ABC}$が,辺$\mathrm{AB}$と辺$\mathrm{AC}$の長さが等しい二等辺三角形であるとする.辺$\mathrm{BC}$,$\mathrm{CA}$,$\mathrm{AB}$と内接円の接点をそれぞれ$\mathrm{P}$,$\mathrm{Q}$,$\mathrm{R}$とする.また,$\alpha=\angle \mathrm{CAB}$,$\beta=\angle \mathrm{ABC}$とし,三角形$\mathrm{ABC}$の面積を$S$とする.

(1)線分$\mathrm{AQ}$の長さを$\alpha$を用いて表し,線分$\mathrm{QC}$の長さを$\beta$を用いて表せ.
(2)$\displaystyle t=\tan \frac{\beta}{2}$とおく.このとき,$S$を$t$を用いて表せ.
(3)不等式$S \geqq 3 \sqrt{3}$が成り立つことを示せ.さらに,等号が成立するのは,三角形$\mathrm{ABC}$が正三角形のときに限ることを示せ.
慶應義塾大学 私立 慶應義塾大学 2015年 第3問
$3$次関数$f(x)$は$x=0$で極小,$x=a>0$で極大になるとする.また$x=b (\neq a)$で$f(a)=f(b)$が成り立つとする.$x=b$における$y=f(x)$の接線が$y$軸と交わる点を$(0,\ c)$とおく.もし$3$点$(a,\ f(a))$,$(b,\ f(b))$,$(0,\ c)$を$3$頂点とする三角形が二等辺三角形になるならば,接線の傾きは
\[ -2 \sqrt{[$27$][$28$]} \quad\text{または}\quad -\sqrt{[$29$][$30$]} \]
であり,それぞれに対応して,$c$の値は
\[ c-f(a)=-\sqrt{[$31$][$32$]}a \quad\text{または}\quad -\frac{\sqrt{[$33$]}}{[$34$]}a \]
をみたす.
広島工業大学 私立 広島工業大学 2015年 第7問
下図のような$\angle \mathrm{B}=\angle \mathrm{C}={30}^\circ$の二等辺三角形$\mathrm{ABC}$において,$\triangle \mathrm{ABC}$の外接円の中心を$\mathrm{O}$,半径を$\sqrt{3}$とする.さらに,弧$\mathrm{AC}$上に$\mathrm{AP}=\mathrm{PC}$となる点$\mathrm{P}$をとる.次の問いに答えよ.
(図は省略)

(1)辺$\mathrm{AB}$,$\mathrm{BC}$の長さを求めよ.
(2)線分$\mathrm{BP}$の長さを求めよ.
(3)$\angle \mathrm{BPC}$および$\mathrm{CP}$の長さを求めよ.
(4)四角形$\mathrm{ABCP}$の面積を求めよ.
上智大学 私立 上智大学 2015年 第2問
$\mathrm{O}$を原点とする座標空間において,$\mathrm{OA}=2$,$\mathrm{OB}=1$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OB}}=-1$を満たす点$\mathrm{A}$と点$\mathrm{B}$を考え,直線$\mathrm{AB}$上に点$\mathrm{P}$をとる.ただし,$\mathrm{AB}>\mathrm{AP}$とする.

(1)$\mathrm{OP} \perp \mathrm{AB}$のとき,$\displaystyle \mathrm{OP}=\frac{\sqrt{[サ]}}{[シ]}$である.
(2)$\triangle \mathrm{OBP}$が二等辺三角形であるとき,
\[ \mathrm{OP}^2=1,\quad \mathrm{AP}=\frac{[ス]}{[セ]} \sqrt{[ソ]}, \]
または
\[ \mathrm{OP}^2=[タ]+\frac{[チ]}{[ツ]} \sqrt{[テ]},\quad \mathrm{AP}=[ト]+\sqrt{[ナ]}, \]
または
\[ \mathrm{OP}^2=\frac{[ニ]}{[ヌ]},\quad \mathrm{AP}=\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
である.ただし,
\[ \frac{[ス]}{[セ]} \sqrt{[ソ]}<[ト]+\sqrt{[ナ]}<\frac{[ネ]}{[ノ]} \sqrt{[ハ]} \]
とする.
(3)座標空間に,$\mathrm{OC}=2$,$\overrightarrow{\mathrm{OA}} \cdot \overrightarrow{\mathrm{OC}}=1$,$\overrightarrow{\mathrm{OB}} \cdot \overrightarrow{\mathrm{OC}}=1$を満たす点$\mathrm{C}$をとる.$3$点$\mathrm{O}$,$\mathrm{A}$,$\mathrm{B}$の定める平面を$\alpha$とし,点$\mathrm{C}$から平面$\alpha$に垂線$\mathrm{CQ}$を下ろす.このとき,

$\displaystyle \mathrm{CQ}=\frac{\sqrt{[ヒ]}}{[フ]}$であり,四面体$\mathrm{OABC}$の体積は$\displaystyle \frac{\sqrt{[ヘ]}}{[ホ]}$である.
東京理科大学 私立 東京理科大学 2015年 第2問
各辺の長さが整数であるような三角形を考え,その$3$辺の長さを$x,\ y,\ z (x \leqq y \leqq z)$とする.また,$n$を自然数とする.このとき以下の問いに答えよ.

(1)$z=n$であるような三角形の個数を$a_n$とするとき,$a_5$および$a_6$を求めよ.
(2)$(1)$の$a_n$を$n$の式で表せ.
(3)$z \leqq n$であるような三角形の個数を$b_n$とする.

(i) $b_n$を$n$の式で表せ.
(ii) $b_n>2015$となるような最小の自然数$n$を求めよ.

(4)$z=n$であるような三角形で二等辺三角形でないものの個数を$c_n$とするとき,$c_n$を$n$の式で表せ.
獨協医科大学 私立 獨協医科大学 2015年 第2問
正$n$角形$\mathrm{P}_1 \mathrm{P}_2 \mathrm{P}_3 \cdots \mathrm{P}_n$($n$は$4$以上の整数)を$K$とする.$K$の頂点と各辺の中点の合計$2n$個の点から異なる$3$点を選び,それらを線分で結んでできる図形を$T$とする.(ただし,$K$の$1$つの頂点とそれに隣接する中点の一方を結ぶ線分を$1$辺とする三角形,例えば辺$\mathrm{P}_1 \mathrm{P}_2$の中点を$\mathrm{M}_1$として,三角形$\mathrm{P}_1 \mathrm{M}_1 \mathrm{P}_3$なども「$K$と辺を共有する三角形」とする.)

(1)$n=5$とする.
$T$が三角形となる確率は$\displaystyle \frac{[アイ]}{[ウエ]}$である.
$T$が二等辺三角形となる確率は$\displaystyle \frac{[オ]}{[カキ]}$である.
$T$が$K$と辺を共有しない三角形となる確率は$\displaystyle \frac{[ク]}{[ケ]}$である.
(2)$T$が三角形となる確率は
\[ \frac{[コ]n^2-[サ]n-[シ]}{[ス]([セ]n-[ソ])(n-[タ])} \]
である.
$T$が$K$と辺を共有しない三角形となる確率は
\[ \frac{[チ]n^2-[ツテ]n+[トナ]}{([セ]n-[ソ])(n-[タ])} \]
である.
近畿大学 私立 近畿大学 2015年 第3問
座標平面上に曲線$\displaystyle C:y=\frac{1}{x}(x-t)(x-t-1)$(ただし$x>0,\ t>0$)がある.$C$上の点$\mathrm{P}(t,\ 0)$における接線を$\ell_1$,点$\mathrm{Q}(t+1,\ 0)$における接線を$\ell_2$とし,$\ell_1$と$\ell_2$の交点を$\mathrm{R}$とする.

(1)$\displaystyle t=\frac{1}{5}$の場合について考える.$\ell_1$の傾きは$[ア][イ]$,$\ell_2$の傾きは$\displaystyle \frac{[ウ]}{[エ]}$であり,点$\mathrm{R}$の$y$座標は$\displaystyle -\frac{[オ]}{[カ]}$である.また,$\ell_1$,$\ell_2$および$C$によって囲まれた部分の面積は
\[ \frac{[キ]}{[ク][ケ]} \log [コ]-\frac{[サ][シ]}{[ス][セ]} \]
である.
(2)$\ell_1$と$\ell_2$が直交するのは$\displaystyle t=\frac{[ソ][タ]+\sqrt{[チ]}}{[ツ]}$のときである.また,$\triangle \mathrm{PQR}$が二等辺三角形となるのは$\displaystyle t=\frac{[テ]}{[ト]}$のときである.
久留米大学 私立 久留米大学 2015年 第1問
原点を中心とする半径$5$の円周上に,$2$点$\mathrm{A}(0,\ -5)$,$\mathrm{B}(4,\ -3)$がある.

(1)円周上に,$\triangle \mathrm{ABC}$が直角三角形になるようにとった点$\mathrm{C}$の座標は$[$1$]$である.
(2)円周上に,$\triangle \mathrm{ABC}$が二等辺三角形になるようにとった点$\mathrm{C}$の座標は$[$2$]$である.
(3)円に内接し,線分$\mathrm{AB}$にも接する円のうち,直径が最大の円の方程式は$[$3$]$である.
大阪府立大学 公立 大阪府立大学 2015年 第1問
次の問いに答えよ.

(1)$m$を整数とし,不定積分
\[ I=\int x^m \log x \, dx \]
を計算せよ.ただし,積分定数は省略してよい.
(2)$n$を$3$以上の自然数とする.正$n$角形の頂点から相異なる$3$点を選んで三角形を作るとき,その三角形が二等辺三角形となる場合の数を$a_n$とする.

(i) $a_6,\ a_7$をそれぞれ求めよ.
(ii) 自然数$k$に対して,$a_{6k},\ a_{6k+1}$をそれぞれ$k$を用いて表せ.
静岡大学 国立 静岡大学 2014年 第1問
$\mathrm{AB}=\mathrm{AC}=8$である二等辺三角形$\mathrm{ABC}$がある.点$\mathrm{P}$は辺$\mathrm{BC}$上にあり,$\angle \mathrm{BAP}=\theta$,$\angle \mathrm{PAC}=2\theta$,$\displaystyle \cos \theta=\frac{7}{8}$であるとする.このとき,次の問いに答えよ.

(1)$\mathrm{BC}$の長さを求めよ.
(2)$\mathrm{BP}:\mathrm{PC}$を求めよ.
(3)$\mathrm{AP}$の長さを求めよ.
スポンサーリンク

「二等辺三角形」とは・・・

 まだこのタグの説明は執筆されていません。