タグ「中点」の検索結果

8ページ目:全364問中71問~80問を表示)
千葉大学 国立 千葉大学 2015年 第4問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
福井大学 国立 福井大学 2015年 第1問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第1問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
福井大学 国立 福井大学 2015年 第2問
三角形$\mathrm{OAB}$があり,$0<p<1$,$0<q<1$として,辺$\mathrm{OA}$を$p:(1-p)$に内分する点を$\mathrm{C}$,辺$\mathrm{OB}$を$q:(1-q)$に内分する点を$\mathrm{D}$とする.線分$\mathrm{AD}$と線分$\mathrm{BC}$の交点を$\mathrm{E}$,線分$\mathrm{AB}$,$\mathrm{OE}$,$\mathrm{CD}$の中点をそれぞれ$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$とする.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$とするとき,以下の問いに答えよ.

(1)$\overrightarrow{\mathrm{OE}}$を$p,\ q,\ \overrightarrow{a},\ \overrightarrow{b}$を用いて表せ.
(2)$3$点$\mathrm{F}$,$\mathrm{G}$,$\mathrm{H}$は一直線上にあることを示せ.
(3)$\mathrm{OA}=2$,$\mathrm{OB}=3$,$\displaystyle \angle \mathrm{AOB}=\frac{2}{3} \pi$に対して
\[ \mathrm{GF}:\mathrm{GH}=7:2,\quad \mathrm{AB} \perp \mathrm{GF} \]
となるとき,$p$と$q$の値を求めよ.
山梨大学 国立 山梨大学 2015年 第3問
下の図のように,$\mathrm{ABCDE}$を頂点とする正五角形$P_1$を考える.$P_1$の各辺の中点をとり,その中点を順に結び正五角形$P_2$をつくる.さらに,正五角形$P_2$の各辺の中点をとり,その中点を順に結び正五角形$P_3$をつくる.以下,これを繰り返す.正五角形$P_1$の一辺の長さを$1$,正五角形$P_n (n=1,\ 2,\ 3,\ \cdots)$の一辺の長さを$a_n$としたとき,次の問いに答えよ.
(図は省略)

(1)対角線$\mathrm{AC}$と$\mathrm{BD}$の交点を$\mathrm{F}$とする.$\triangle \mathrm{ACD}$と$\triangle \mathrm{DFC}$が相似であることを証明せよ.
(2)対角線$\mathrm{AC}$の長さを求めよ.
(3)$a_n$を$n$の式で表せ.
(4)数列$\{a_n\}$の初項から第$n$項までの和を求めよ.
鹿児島大学 国立 鹿児島大学 2015年 第7問
次の各問いに答えよ.ただし,$i$は虚数単位とする.

(1)方程式$z^4=-1$を解け.
(2)$\alpha$を方程式$z^4=-1$の解の一つとする.複素数平面に点$\beta$があって$|z-\beta|=\sqrt{2} |z-\alpha|$を満たす点$z$全体が原点を中心とする円$C$を描くとき,複素数$\beta$を$\alpha$で表せ.
(3)点$z$が$(2)$の円$C$上を動くとき,点$i$と$z$を結ぶ線分の中点$w$はどのような図形を描くか.
宮城教育大学 国立 宮城教育大学 2015年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$は平面$\mathrm{OBC}$に直交し,
\[ \mathrm{OA}=\sqrt{6},\quad \mathrm{OB}=\mathrm{OC}=\mathrm{BC}=1 \]
であるとする.四面体$\mathrm{OABC}$の内部の点$\mathrm{P}$から,平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{PD}$,平面$\mathrm{OBC}$に下ろした垂線を$\mathrm{PE}$,平面$\mathrm{OAC}$に下ろした垂線を$\mathrm{PF}$,平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{PG}$とする.ここで,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$はそれぞれ平面$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OAC}$,$\mathrm{ABC}$上の点である.$3$つの線分$\mathrm{PD}$,$\mathrm{PE}$,$\mathrm{PF}$の長さは等しく,その長さを$R$とする.辺$\mathrm{BC}$の中点を$\mathrm{H}$とすると,点$\mathrm{E}$は線分$\mathrm{OH}$上にあり,点$\mathrm{G}$は線分$\mathrm{AH}$上にある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次の問に答えよ.

(1)$\overrightarrow{\mathrm{HA}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また線分$\mathrm{HA}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$R$を用いて表せ.
(3)線分$\mathrm{PG}$の長さが$R$であるとき,$R$の値を求めよ.
宮城教育大学 国立 宮城教育大学 2015年 第3問
四面体$\mathrm{OABC}$において,辺$\mathrm{OA}$は平面$\mathrm{OBC}$に直交し,
\[ \mathrm{OA}=\sqrt{6},\quad \mathrm{OB}=\mathrm{OC}=\mathrm{BC}=1 \]
であるとする.四面体$\mathrm{OABC}$の内部の点$\mathrm{P}$から,平面$\mathrm{OAB}$に下ろした垂線を$\mathrm{PD}$,平面$\mathrm{OBC}$に下ろした垂線を$\mathrm{PE}$,平面$\mathrm{OAC}$に下ろした垂線を$\mathrm{PF}$,平面$\mathrm{ABC}$に下ろした垂線を$\mathrm{PG}$とする.ここで,$\mathrm{D}$,$\mathrm{E}$,$\mathrm{F}$,$\mathrm{G}$はそれぞれ平面$\mathrm{OAB}$,$\mathrm{OBC}$,$\mathrm{OAC}$,$\mathrm{ABC}$上の点である.$3$つの線分$\mathrm{PD}$,$\mathrm{PE}$,$\mathrm{PF}$の長さは等しく,その長さを$R$とする.辺$\mathrm{BC}$の中点を$\mathrm{H}$とすると,点$\mathrm{E}$は線分$\mathrm{OH}$上にあり,点$\mathrm{G}$は線分$\mathrm{AH}$上にある.$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とおいて,次の問に答えよ.

(1)$\overrightarrow{\mathrm{HA}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$を用いて表せ.また線分$\mathrm{HA}$の長さを求めよ.
(2)$\overrightarrow{\mathrm{OP}}$を$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c}$および$R$を用いて表せ.
(3)線分$\mathrm{PG}$の長さが$R$であるとき,$R$の値を求めよ.
千葉大学 国立 千葉大学 2015年 第6問
平面上に$2$つの円
\[ C_1:x^2+y^2=1,\quad C_2:\left( x+\frac{3}{2} \right)^2+y^2=\frac{1}{4} \]
があり,点$(-1,\ 0)$で接している.

点$\mathrm{P}_1$は$C_1$上を反時計周りに一定の速さで動き,点$\mathrm{P}_2$は$C_2$上を反時計周りに一定の速さで動く.二点$\mathrm{P}_1$,$\mathrm{P}_2$はそれぞれ点$(1,\ 0)$および点$(-1,\ 0)$を時刻$0$に同時に出発する.$\mathrm{P}_1$は$C_1$を一周して時刻$2 \pi$に点$(1,\ 0)$に戻り,$\mathrm{P}_2$は$C_2$を二周して時刻$2 \pi$に点$(-1,\ 0)$に戻るものとする.$\mathrm{P}_1$と$\mathrm{P}_2$の中点を$\mathrm{M}$とおく.
$\mathrm{P}_1$が$C_1$を一周するときの点$\mathrm{M}$の軌跡の概形を図示して,その軌跡によって囲まれる図形の面積を求めよ.
秋田大学 国立 秋田大学 2015年 第2問
四面体$\mathrm{OABC}$において,$\mathrm{AB}=\mathrm{BC}=\mathrm{CA}$,$\mathrm{OA}=1$,$\mathrm{OB}=\mathrm{OC}=\sqrt{2}$,$\angle \mathrm{AOB}=\angle \mathrm{AOC}={90}^\circ$,$\angle \mathrm{BOC}=\theta$とする.点$\mathrm{D}$を$\mathrm{BC}$の中点とし,$\overrightarrow{\mathrm{OA}}=\overrightarrow{a}$,$\overrightarrow{\mathrm{OB}}=\overrightarrow{b}$,$\overrightarrow{\mathrm{OC}}=\overrightarrow{c}$とする.次の問いに答えよ.

(1)点$\mathrm{P}$を$\mathrm{AD}$上の点とし,$\mathrm{AP}:\mathrm{PD}=t:(1-t)$とするとき,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ t$を用いて$\overrightarrow{\mathrm{OP}}$を表せ.
(2)点$\mathrm{P}$を$\mathrm{AD}$上の動点とする.$\mathrm{OP}$の長さが最小となるとき,$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \theta$を用いて$\overrightarrow{\mathrm{OP}}$を表せ.
(3)点$\mathrm{Q}$を以下の$①$~$③$を満たすように定める.このとき$\overrightarrow{a},\ \overrightarrow{b},\ \overrightarrow{c},\ \theta$を用いて$\overrightarrow{\mathrm{OQ}}$を表せ.

\mon[$①$] 四面体$\mathrm{OABC}$の体積と四面体$\mathrm{QABC}$の体積は等しい
\mon[$②$] $\mathrm{QA}=\mathrm{QB}=\mathrm{QC}$
\mon[$③$] 線分$\mathrm{OQ}$は$3$点$\mathrm{A}$,$\mathrm{B}$,$\mathrm{C}$が定める平面と交点をもたない.
スポンサーリンク

「中点」とは・・・

 まだこのタグの説明は執筆されていません。